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1. Introduction 

Natural populations are always changing. Hardy-Weinberg assumptions are almost never 
realized because populations are seldom in equilibrium, and many random events (e.g., 
mutations, population size fluctuations, and environmental perturbations) irrevocably alter 
the genetic makeup of populations. Such genetic change can be either for the better (some 
populations adapt and expand) or for the worse (some populations shrink and become 
extinct). Change that occurs as the result of natural selection is termed adaptive evolution 
because natural selection favors the survival of organisms that are best adapted to their 
environments (i.e., have high fitness). On the other hand, nonadaptive evolution refers to 
change that occurs as the result of factors that act independently of organismal fitness (e.g., 
random genetic drift or mutation pressure). Because change within a population depends on 
so many variables and involves innumerable chance events, the study of population 
dynamics is both challenging and fascinating. 

Geneticists study population-level change in three very different ways. The first approach is 
the empirical one. This involves the actual observation of living populations over time, and 
involves direct experimentation with the variables that affect population dynamics. One 
author (JCS) engaged in this approach the first 20 years of his career, first as a plant 
geneticist and breeder, and later as someone who was actively involved in plant genetic 
engineering. The empirical approach has the limitation that it is only possible to study 
changes that happen in a short amount of time, and which display effects that are highly 
visible or easily tracked. For example, when selecting for increased crop yield in plant 
breeding, it is only possible to reliably determine very substantial yield differences (roughly 
10% or more) between genotypes, even with carefully replicated field trials. Such 
observations are very useful, but obviously miss most of what is happening at the genetic 
level (i.e., the innumerable subtle genetic changes that are happening within the 
population). While this empirical method has serious limitations, it has played a major role 
in the development of modern agriculture and modern medicine. 

The second method is the historical/comparative approach. This involves observing 
differences (especially amino acid and DNA sequence differences) within existing 
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populations and trying to infer population histories (e.g., see Li & Durbin, 2011). Such 
inferences can include the degree of relatedness between populations, the time of their 
divergence, and what parts of their genomes were affected by either positive selection, 
negative selection, or no selection. This historical approach is inherently limited by its 
various underlying assumptions, such as the concept of constant-rate molecular clocks or 
the neutrality of synonymous mutations. Because many exceptions to each assumption exist 
(e.g., see Sauna & Kimchi-Sarfaty et al., 2011 on synonymous mutations), the reliability and 
relevance of the historical approach has been hotly debated (for example, see Wilson & 
Cann, 1992 and Thorne & Wolpoff, 1992 on the molecular clock), but there is no doubt that it 
can sometimes help us to correctly infer certain genetic events in the past. There are a 
variety of computational tools that are designed to facilitate this historical approach in 
population genetics. These tools fall under the umbrella of bioinformatics, and include 
software packages that align sequences, infer phylogenetic trees, and perform various 
statistical analyses with the given data. 

The third method is the theoretical approach. This involves studying how hypothetical or 
idealized populations might behave in forward-time, starting from a specific state, based 
upon our knowledge of genetics and population biology. Ten years ago one author (JCS) 
shifted his research focus from the empirical approach to the theoretical approach, because 
the theoretical approach allows consideration of the bigger picture and bigger questions.  

The field of theoretical genetics was established primarily by mathematicians (e.g., Fisher, 
Haldane, and Wright). These scientists realized that even though mutations arise and 
segregate randomly, and survival is influenced by many random elements, and mating is 
largely random, still, directional processes such as selection can play an important role in 
shaping the genetic makeup of a population over long periods of time. 

The mathematical approach to population dynamics has been very fruitful in terms of 
understanding numerous specific aspects of population change, when each is considered in 
isolation. This is particularly true, for example, where selection for a single trait is 
mathematically modeled, or where numerous neutral mutations are drifting in a population. 
The main limitation of the mathematical modeling approach is that it invariably requires 
extreme simplification of the model (e.g., just considering one or a few loci or mutations, or 
just one or a few variables). Unfortunately, real biological populations are not at all simple, 
and so there arises the possibility that the results of simplified mathematical models may 
not correspond to biological reality. This is especially a concern where theoretical models 
have become highly abstract, such that common sense can no longer help us gauge whether 
or not theoretical predictions are reasonable.  

For these reasons mathematical models need to be tested. One way to do this is by returning 
to the empirical approach: studying living biological populations through many generations 
to validate theory. However, this is usually not practical, especially for organisms with long 
generation times. As a practical alternative, mathematical models can be tested in virtual 
populations using numerical simulation. It was for this reason that simple numerical 
computer simulations were first developed by population geneticists - to test and validate 
specific mathematical models. 

Numerical simulations can be seen as the empirical enactment of real processes, but in a 
virtual environment. Even though numerical simulation experiments happen in a computer 



 
The Next Step in Understanding Population Dynamics: Comprehensive Numerical Simulation 

 

119 

environment, numerical simulators can be used to conduct real experiments, and can 
illuminate processes happening in the real world. In terms of modeling fitness change over 
time, a good numerical simulation can act very much like an accountant’s spreadsheet. 
Spreadsheets can be made to accurately and honestly reflect the true financial status of a 
corporate entity. Every dollar is tracked from beginning to end, as it comes and as it goes. In 
fact, in a large corporate entity, a spreadsheet is the only reliable way to see the big financial 
picture. Corporations and governments may not be able to trust their accountants, but they 
can at least trust the operation of their spreadsheets. Likewise, when numerical simulators 
are carefully designed to reflect the real world, they can be powerful and trustworthy tools. 
When used properly, numerical simulations can inform us about what is likely to be 
happening in the real world, even when direct observation is not feasible.  

Population geneticists first used simple numerical simulation to validate a particluar 
component of genetic systems. However, as computational power has grown, and as the 
science of numerical simulation has become more sophisticated, we have now reached the 
point where we can analyze population dynamics in a comprehensive, integrated and 
empirical manner within a virtual environment, independent of copious and often very 
abstract mathematical modeling. Such simulation should enable us to obtain a more 
biologically integrated picture of how real populations change. 

Seven years ago one author (JCS) had the opportunity to oversee the development of a 
comprehensive numerical simulator for the aforementioned purposes. Since that time, a 
group of biologists and computer scientists have been collaborating to develop a numerical 
simulator that can simultaneously model all the major known factors that affect genetic 
change, as well as their relevant interactions, to better approximate what occurs in the real 
world. The resulting program, Mendel’s Accountant (Mendel), appears to be the first 
program that has seriously endeavored to do this. Mendel has been described in previous 
publications (Sanford et al., 2007a, 2007b), and is now beginning to be used for both research 
and teaching. This tool should not be viewed as a replacement for previous tools already 
developed within this field, but it is clear that it represents a major step forward. 

2. Mendel’s Accountant 

Mendel’s Accountant simulates genetic change within a population as it moves forward 
through time. Mendel does this by establishing a virtual population of individuals, and then 
precisely simulates mutation, selection, and gene transmission through many generations, 
always in the most biologically realistic manner possible. Mendel is unique in that it 
attempts to treat all aspects of population dynamics simultaneously and comprehensively, 
thereby ushering in for the first time the prospect of simulating reasonable approximations 
of biological reality.  

Mendel’s Accountant is an apt name for this program because it is largely a “genetic 
accounting“ program. Every generation, huge numbers of specific mutations are introduced 
into a population, spread over the genomes of many individuals. Through the ensuing 
generations, some of these mutations are lost, while others increase in frequency. Each 
mutation must be tracked through many individuals and through many generations, along 
with all data that apply to that mutation (each has an allelic ID, mutational fitness effect, 
degree of dominance, and chromosomal location). During a large run, Mendel can track 
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hundreds of millions of different mutations. Not only does Mendel do the genetic 
accounting associated with tracking individual mutations, it simultaneously does the 
genetic accounting associated with tracking: 1) linkage blocks as they recombine; 2) net 
fitnesses of each individual; 3) the distribution of the fitness effects of all the accumulating 
mutations; and 4) the resulting distribution of allele frequencies.  

Genetic accounting via numerical simulation is possible because the underlying processes 
(Mendelian inheritance, random mutations, differential reproduction) are all relatively 
simple and mechanistic in nature and are therefore subject to straightforward accounting 
procedures. Furthermore, all the relevant biological variables are easily specified as 
parameters for use in simulation (e.g., population size, mutation rate, distribution of 
mutational fitness effects, heritability, and amount of selective elimination each generation). 
Like many high-performance numerical simulations, the core of the Mendel program is 
written in Fortran 90, allowing the execution of tasks that are extremely demanding 
computationally, making it possible to process huge amounts of genetic data. 

To explain how Mendel works in the simplest way possible, it is useful to consider the series 
of decisions that an experimenter must make. Firstly, the experimenter must define the 
species and its reproductive structure. Is it haploid or diploid? How big is the genome, and 
what fraction is funcional? Is its reproduction sexual or clonal? Does the species ever self-
fertilize? All these biological factors can be modeled by Mendel, and must be specified by 
the user, because they have a substantial impact on population dynamics. These parameters 
determine how reproduction and gene transmission will occur within the virtual species. 

Secondly, the experimenter must define the characteristics of a particular population within 
the species. How big is the population before and after selection? Are there sub-
populations? How many generations do we wish to observe? These parameters define the 
actual scope and architecture of a particular experiment.  

Thirdly, the user must specify reproductive details. The reproductive rate must always be 
high enough to create a population surplus each generation, such that this surplus can then 
be selectively removed each generation. For example, the default reproduction rate is 3. In 
this case the number of offspring generated each generation is always 3 times larger than the 
specified population size. This creates a surplus population large enough for selection to 
remove two of every three offspring in the next generation. If the population under study 
reproduces sexually, recombination will occur at this stage. The experimenter must specify 
the number of chromosomes (assuming two cross-overs per chromosome) and the number 
of linkage blocks (this affects segregation of linkage blocks during gamete production).  

Fourthly, the experimenter needs to specify the mutations that will be added to the 
population. After creating a new virtual population of offspring, Mendel then begins to add 
new mutations to those individual offspring. Mendel assigns mutations to individuals 
randomly, following a Poisson distribution. The experimenter specifies a mutation rate 
appropriate for the species under study (or one that is of theoretical interest). Likewise, the 
experimenter must specify a distribution of mutational fitness effects. Typically this 
distribution will include deleterious, neutral, and beneficial mutations. The mutations that 
are added to the population are drawn randomly from a user-specified pool of potential 
mutations (usually having a Weibull distribution of fitness effects). Drawing from such a 
distribution, some mutations will have large effects, but most will have small (nearly-
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neutral) effects (Kimura, 1983), as occurs in nature (Eyre-Walker & Keightley, 2007). Each 
new mutation has an identifier for tracking purposes, a fitness effect, a specified degree of 
dominance, and a chromosomal location (i.e., a designated linkage block).  

Lastly, the experimenter needs to specify the nature of the selection process. Once Mendel 
has created a newly mutated population of offspring, it must implement selective removal. 
To do this Mendel first calculates the combined effect of all mutations in each individual 
(initial individuals containing zero mutations having a fitness of one, with beneficial 
mutations increasing fitness and deleterious mutations reducing fitness). Mutations can be 
combined either additively or multiplicatively (or in alternative ways, i.e., epistatically). 
Once the fitness of each individual has been calculated, a certain fraction of the population is 
selectively eliminated based upon genetic fitness, usually eliminating the exact population 
surplus, so that the original population size is restored. Selective removal can be either by 
truncation selection, probability selection, or partial truncation. To add biological realism, 
the user can specify a heritability of less than one, such that fitness variations caused by 
environmental noise will be added to the genetic fitness to establish the fitness phenotype, 
which is then the basis for selection. The individuals that survive selection will then be 
ready to repeat the cycle of mutation, reproduction, and selection. 

During a single experiment, Mendel can routinely simulate hundreds of millions of newly 
arising mutations. Each mutation is tracked through all generations, until it is either lost or 
goes to fixation, or until the experiment is complete. Throughout the whole run Mendel is 
continuously monitoring, recording, and plotting the average number of mutations per 
individual, individual and average fitness, population size history, the fitness distributions 
of accumulating mutations, selection threshold histories, linkage block net fitness values, 
and mutant allele frequencies. 

3. Forward-time population genetic numerical simulations 

There are numerous forward-time simulation tools currently in use within the field of 
population genetics. Detailed reviews on the subject are available elsewhere (e.g., see 
Carvajal-Rodgríguez, 2008; Kim & Wiehe, 2008; Liu et al., 2008; Carvajal-Rodríguez, 2010). It 
is useful to provide a general overview of these programs to properly appreciate the types 
of problems that can be addressed with such simulations. Every forward-time simulation is 
designed with a particular application in mind, and each is best suited to study a certain 
class of scenarios.  

3.1 FPG 

The FPG (forward population genetic) simulation is the most similar to Mendel in concept 
(Hey, 2009). The user is able to define a mutation rate per generation for deleterious, neutral, 
and beneficial mutations, a fitness model (i.e., whether mutations combine additively, 
multiplicatively, or epistatically), a population size (i.e., number of genomes), and various 
other parameters. It is possible to track average fitness over time and perform analyses for 
linkage disequilibrium, fitness, and heterozygosity at the conclusion of an experiment. 
However, FPG is not readily accessible to most biologists. Running the program requires the 
user to understand and construct a string of input values at the command line level. Some of 
these values are not intuitive, e.g., a populational selection coefficient. FPG is also limited in 
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terms of genome and population sizes. Its distributed version allows only 1000 sequences, 
and each sequence is restricted to 32 polymorphic sites, limiting the total number of effective 
mutations to 32000. This may be sufficient to model some long-term dynamics of 
populations with very small genomes, but it is generally inadequate for eukaryotic 
organisms. Finally, when large numbers of mutations occur, FPG appears to ignore fixed 
mutations after the fitness exceeds what can be stored as a floating point. Thus this program 
appears to ignore fixed mutations and their fitness effects to save computational resources, 
sometimes leading to counterintuitive output. Because of these considerations, FPG may 
work well for simple illustrative case studies but simply cannot handle the population sizes 
and number of mutations necessary to realistically address most biological scenarios. 
Perhaps its greatest limitation is that it models all mutations within a class (e.g., deleterious) 
as having identical fitness effects. 

3.2 SimuPOP 

SimuPOP is another forward-time simulation well-suited for tackling problems that involve 
a small number of functional loci. This program is especially helpful when studying the 
evolutionary dynamics of disease predisposing alleles. SimuPOP also allows the user to 
define auxiliary information for individual organisms. This information can be used to 
group organisms into virtual subpopulations, potentiating assortative mating based on 
characteristics such as genotype, sex, or age. Though flexible, simuPOP is challenging to use. 
Perhaps one of its largest drawbacks is that the user must write a Python macro to run an 
experiment. This can be an arduous task for even modestly complex evolutionary scenarios, 
as it requires a deep understanding of simuPOP and how to utilize its various components. 

3.3 FREGENE 

FREGENE is most innovative not so much for its novel implementation and flexibility, but 
rather for its use of a rescaling technique to make large problems less computationally 
intensive. Specifically, both population size (N) and number of generations are decreased by 
a factor of  > 1, while all rate parameters (e.g., mutation, recombination, and migration 
rates) are increased by the same factor. This can be relaxed at the end of an experiment, such 
that (for example) the population size expands linearly from N/ to N. Though this is 
clearly more computationally expedient than modeling full populations for full lengths of 
time, it is not ideal. For example, many processes depend on the absolute (not scaled) 
parameters, such as the fixation probability of beneficial mutations (Kim & Wiehe, 2008). 
Moreover, more advanced simulation software can usually handle the true population sizes 
and rates of interest, so there is often no need for such rescaling. FREGENE also implements 
an uncommon distribution of mutational fitness effects, drawing selection coefficients from 
two normal distributions (one each for deleterious and beneficial mutations) with user-
specified means and variances. This is also sub-optimal, as it has long been agreed that the 
distribution of mutational fitness effects is approximately exponential, such that the majority 
of effective mutations are relatively low-impact (Eyre-Walker & Keightley, 2007). 

3.4 Forwsim 

Forwsim is another tool that implements a novel technique to save computational resources. 
To do this, the user can ask the simulation to look k generations ahead in order to determine 
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which chromosomes will be passed to future generations. Once it is determined which 
chromosomes cannot contribute to future generations, those chromosomes are no longer 
simulated. Though there is a computational trade-off between looking k generations ahead 
and precluding the copying of unnecessary chromosomes, this process does serve to make 
many evolutionary scenarios more manageable. However, as previously stated, such 
techniques are often no longer necessary. 

3.5 Avida 

Finally, it is useful to contrast forward-time numerical simulations with digital life 
programs, especially the Avida simulation (Lenski et al., 2003; Ofria & Wilke, 2004), an 
elaboration of Tierra (Ray, 1991). There are important differences between the digital life 
approach and the numerical simulation approach described here. Forward-time numerical 
simulations attempt to simulate biological processes primarily by tracking numerical values 
(e.g., fitness) that change based on user-specified conditions. Using values measured in 
biological research (e.g., mutational fitness effects), the goal of numerical simulation is to 
accurately predict various populational dynamics under those conditions. A distribution of 
mutational fitness effects is specified, mutations are assigned certain locations on 
chromosomes, and their fitness effects simply increment or decrement an organism’s fitness 
according to the selection model and gene interaction. Digital life, on the other hand, 
attempts to instantiate a model genome itself in the form of self-replicating computer code. 
Fitness then becomes an emergent value according to that program’s behavior in the 
software environment. A full distribution of mutational fitness effects cannot be specified, 
only observed. In the case of Tierra, whatever changes allow the program to replicate faster 
in the simulated environment will be beneficial. Programs tend to shrink, allowing quicker 
self-replication, and parasitic behavior also emerges.  

Avida builds on the concept of Tierra by introducing an external fitness function. In 
practice, this means that the Avida environment continually examines the population of 
digital organisms for certain computational operations. When these operations arise, the 
lucky organism can be rewarded with the ability to execute additional genomic instructions, 
allowing it to execute its code, and thus replicate, faster. The size of a reward is decided by 
the user, and experimental results depend critically on these values (Nelson & Sanford, 
2011). It should be kept in mind that these operations are arbitrary, i.e., they only increase 
fitness because the programmer has imposed an arbitrary rule with fitness rewards. In other 
words, while genome shrinkage is a genuine way to increase replication speed, the fitness 
rewards based on certain computational operations can occur only because the programmer 
has altered the software environment to implement such a scheme. 

Experiments with digital life systems are usually conducted with the goal of shedding light 
on general principles that are relevant to all self-replicating systems. However, though 
digital life research has produced a large number of publications in the biological literature, 
it appears to lack the ability to address the real issues in the genomics era. For example, 
genomes in Avida – only 50 to 100 monomers – are many orders of magnitude smaller than 
real biological genomes, and each Avida “mutation“ which introduces a complete 
computational operation is assigned an unreasonably large fitness effect (i.e., 1.0 – 31.0; see 
Nelson & Sanford, 2011). Because mutations have an essential role in terms of introducing 
novel genetic variation, it is critical to simulate mutations realistically, and to examine 
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realistically large genomes in which the fate of multiple low-impact mutations can be 
studied. The majority of fixations over the course of evolution do not involve highly 
beneficial mutations, but rather primarily involve nearly-neutral mutations (e.g., see 
Kimura, 1983; Hughes, 2008), so the biological relevance of digital life appears extremely 
limited. 

It should now be clear that population genetics is more than an academic exercise. Many real-
world problems that are informed by population genetics need resolution and demand 
biological models that honestly reflect nature. For example, there is very strong evidence that 
the human population is experiencing a marked decline in fitness due to the accumulation of 
very slightly deleterious mutations in both the mitochondrial and nuclear genomes (e.g., see 
Muller, 1950; Kondrashov, 1995; Loewe, 2006; Lynch, 2010). Thus there is a genuine need for 
serious and honest numerical simulations that can enable us to study these types of real-world 
problems. Specifically, it is imperative that we have the ability to model and calculate the net 
fitness effects of large numbers of low-impact mutations in large genomes. 
 

Tool Organisms & Populations Mutation Fitness & Selection 
Avida 
(C++) 
Lenski et al., 2003; 
Ofria & Wilke, 2004; 
Nelson & Sanford, 
2011 

Organisms (typically 
asexual and haploid) 
contain genomes 
comprised of machine 
code instructions, as well 
as stacks and registers for 
storing and manipulating 
numbers. Populations 
exist on a two dimensional 
grid. 

Mutations randomly 
substitute, insert, or delete 
one of 26 machine code 
instructions in the genome. 
The user specifies the 
various mutation rates. 

Organisms replace each 
other when they produce 
a daughter cell. Speed of 
replication determines 
fitness, and this can be 
increased by either 
genome shrinkage or 
rewards for 
computational tasks. 

Forwsim 
(C++) 
Padhukasahasram 
et al., 2008 
 

Diploid organisms contain 
chromosome arrays that 
store the locations of 
mutations. The user 
specifies a probability of 
selfing. Populations of 
constant size reproduce 
with non-overlapping 
generations. 

Mutations occur at a 
Poisson-distributed rate 
and insert new integers 
into chromosome arrays, 
which may undergo 
recombination. The 
number of sites is finite, but 
mutations occur only at 
non-polymorphic sites. 
Locations which are no 
longer polymorphic are 
removed. 

If using natural selection, 
the evolution of selected 
and neutral sites is 
carried out separately, 
with selected sites 
considered first. The 
program excels at 
simulating genetic drift 
in a standard Wright-
Fisher process. 

FPG 
(C) 
Hey, 2009 

Diploid organisms contain 
a user-defined number of 
chromosomes with a user-
specified number of 
segments. Each segment 
can hold 32 mutations. It is 
possible to specify 
subpopulations. 
Populations of constant 
size reproduce with non-
overlapping generations. 

The user specifies one 
mutational fitness effect; 
deleterious and beneficial 
mutations have equal but 
opposite effects. 
Dominance and epistasis 
are user-specified. No 
segregating site in the 
population can receive 
another mutation. A 
maximum of 32,000 
mutations can be tracked. 

The user specifies a 
fitness model (additive, 
multiplicative, or 
epistatic). If fitness falls 
below a certain point, 
fixed mutations are 
ignored thereafter. 
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Tool Organisms & Populations Mutation Fitness & Selection 
FREGENE 
(C++) 
Hoggart et al., 2007; 
Chadeau-Hyam et 
al., 2008 

Sexual diploid organisms 
(specified selfing 
probability). Genomes are 
single linear sequences 
represented as lists of sites 
at which a minor allele is 
present. Genomes 
recombine. Allows 
subpopulations. 
Populations of constant 
size reproduce with non-
overlapping generations. 

Deleterious and beneficial 
mutational fitness effects 
are modeled as two user-
specified normal 
distributions. Two allele, 
finite sites model. 
Dominance, heritability, 
and recombination are also 
user-specified. Mutations 
occur independently at a 
constant rate. After a 
derived allele reaches 
fixation, it no longer affects 
fitness. 

The user defines loci to 
be under selection, and 
can restrict such selection 
to subpopulations or 
time periods. Individual 
fitness is equal to unity 
plus the sum of 
contributions of selected 
sites. 

Mendel’s 
Accountant 
(Fortran 90) 
Sanford et al., 2007 

Organisms (typically 
sexual diploid; selfing is 
user-specified) contain a 
user-defined number of 
chromosomes with a user-
specified number of 
linkage blocks. Allows 
subpopulations. 
Populations of constant 
size reproduce with non-
overlapping generations. 

Mutations occur at a 
Poisson-distributed rate 
with Weibull-distributed 
fitness effects. Proportions 
of deleterious and 
beneficial mutations are 
user-specified. Allows 
heritability, dominance, 
and recombination. Infinite 
sites, infinite allele model, 
though back mutations 
may be specified. 

The user selects a fitness 
model (additive, 
multiplicative, or 
epistatic). The user also 
sets the reproduction 
rate, with a higher 
reproduction rate 
allowing more intense 
selection (population size 
must be maintained). All 
loci may incur mutations 
affecting fitness. 

SimuPOP 
(Python) 

User defines ploidy, 
number of chromosomes, 
and loci under selection. 
The user chooses a mating 
scheme (including random 
mating and selfing). 
Allows subpopulations. 
Individual information 
can be specified, e.g., age, 
allowing non-random 
mating. 

User-defined loci are used 
to store mutations, 
represented in a genome by 
sequential non-negative 
numbers. Implements a 
finite sites k-allele model, 
but allows other models to 
be specified. 

The user specifies a 
fitness model 
(multiplicative, additive, 
or hetergenous). Fitness 
is assigned to individuals 
before mating, and 
parents to reproduce are 
chosen with probabilities 
proportional to their 
fitness. 

Table 1. Comparison of several available population genetic simulations. 

Readers are encouraged to examine these and other programs to determine which is best 
suited for particular applications (Carvajal-Rodgríguez, 2008; Kim & Wiehe, 2008; Liu et al., 
2008; Carvajal-Rodríguez, 2010). Among these forward-time simulations, Mendel appears to 
be unique in that it is the first comprehensive (and hence most biologically realistic) 
population genetics numerical simulator. Mendel can simultaneously consider nearly all of 
the major factors that are recognized to be operational in a real population, and yields a 
multi-dimensional view of how populations really change. Moreover, the user has an 
intuitive and user-friendly interface, such that the user need only specify desired values for 
all available parameters. Mendel was designed and implemented in Fortran 90 to optimize 
use of computer resources, which allows the user to use an ordinary laptop computer to 
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track many millions of mutations – orders of magnitude more than would be possible with 
any other application currently available. Very significantly, Mendel for the first time gives 
us the ability to model the net fitness effects of large numbers of low-impact mutations in 
large genomes. 

Although Mendel is undergoing continuous enhancement, it has already demonstrated its 
ability to address a wide range of biological questions. Mendel is open-source code, and 
researchers are welcome to use it as a spring-board for further improvement. Mendel would 
seem to provide the most logical platform for building even more advanced simulators, 
which may eventually enable us to test essentially any biological scenario.  

4. Applications 

We briefly summarize below some basic findings already observed in various 
comprehensive numerical simulation applications. Some of these findings were exactly as 
would have been expected, while other findings seemed very surprising (although, upon 
reflection, they are clearly logical and correct).  

4.1 Deleterious mutation accumulation 

Mendel keeps a tally of how many deleterious mutations have accumulated in each 
individual. Mendel very consistently shows us that the mean deleterious mutation count per 
individual increases at an approximately constant rate over time (Sanford et al., 2007b; 
Gibson et al., 2012). This appears to be a very fundamental phenomenon (Figure 1). In fact, 
we can only simulate a substantially non-linear accumulation of deleterious mutation count 
per individual by using highly artificial parameters (Figure 2; see Brewer et al., 2012). 
Specifically, to cause mutation count per individual to plateau requires all deleterious 
mutations to have approximately equal affects on fitness, full or partial truncation selection, 
and sexual recombination. This combination of conditions is highly improbable under most 
natural circumstances. For example, organisms with very small genomes such as viruses 
should have a relatively narrow range of mutational fitness effects, but such organisms 
generally lack any type of regular sexual recombination. The general problem of ever-
increasing genetic load within natural populations represents a widely recognized 
evolutionary paradox (Kondrashov, 1995; Crow, 1997; Sanford et al., 2007b; Gibson et al., 
2012) and requires more research. Biologically realistic numerical simulations are the only 
practical means to further elucidate this problem, because the problem involves high 
numbers of very low-impact mutations, biological noise, and selection interference. 

4.2 Beneficial mutation accumulation 

Mendel also keeps a tally of how many beneficial mutations have accumulated in each 
individual. Like deleterious mutations, the number of beneficial mutations per individual 
tends to increase at a relatively constant rate, except for a very small class of beneficial 
mutations that have relatively large effects on fitness. Above a certain fitness effect, 
beneficial mutations are strongly amplified, leading to a period of accelerated mutation 
accumulation for that set of mutations and any mutations linked to them. The rapid 
amplification of high-impact beneficial mutations is as would be as expected, but it is 
striking to see that the large majority of beneficial mutations are too subtle to respond to  
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Fig. 1. Mutation accumulation in Mendel. Comprehensive numerical simulation reveals that 
mutation accumulation over time is largely linear. Mean mutation count per individual was 
tracked during the course of a Mendel experiment using default settings, except that 
selection efficiency was optimized (fitness heritability = 1, truncation selection). Input 
mutations were 10% beneficial, 20% neutral, and 70% deleterious. In this experiment, mean 
fitness increased by 210%. As can be seen, all three classes of mutation accumulated 
essentially linearly, but differed relative to their rate of accumulation (slope). Neutral 
mutations accumulated as expected, just as if there were no selection (bottom line). The 
deleterious mutations accumulated slightly slower than would be expected if there were no 
selection (upper line). The beneficial mutations accumulated almost 3 times faster than 
would be expected if there were no selection (middle line).  

 
Fig. 2. The effects of uniform fitness effects on deleterious mutation accumulation. Only 
highly unrealistic conditions cause deleterious mutation accumulation to significantly 
diverge from linearity (such that deleterious mutation count per individual begins to 
plateau). The straight line reflects an experiment employing the basic Mendel default 
settings but with all mutations being deleterious (a broad distribution of mutation fitness 
effects, fitness heritability = 0.2, probability selection). The curved line reflects the same run 
but where all mutations had an equal fitness effect (-.0001) and truncation selection was 
employed. 
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selection (Sanford et al., 2012). Except for those few high-impact beneficial mutations which 
are strongly amplified, the ratio of beneficial versus deleterious mutations does not change 
dramatically in response to selection (see Figures 1 and 3). Since it is well known that 
deleterious mutations arise much more frequently than do beneficial mutations, this means 
that many more functional nucleotide sites are being disrupted than are being established, 
even with intense selection. This suggests there should be a strong natural tendency toward 
net loss of genetic information over time, even while a limited number of beneficial 
mutations are being strongly amplified. This represents a second major evolutionary 
paradox that demands serious attention by researchers. Again, it seems clear that this 
problem can best be understood by further numerical simulation experiments.  

 
Fig. 3. A comparison of beneficial and deleterious mutation accumulation. Beneficial 
mutations accumulate essentially linearly, but their dynamics are quite erratic due to their 
rare occurrence. It is generally understood that beneficial mutations are rare, which makes 
their study problematic. The Mendel default setting for the relative rate of beneficial 
mutation is one in 10,000 mutations. Given the Mendel default setting (zero neutral 
mutations, one in 10,000 mutations beneficial), beneficial mutation accumulation (jagged 
line, scale on right) is dwarfed by deleterious mutation accumulation (straight line, scale on 
left). For this reason it is usually necessary to employ rates of beneficial mutation which are 
exaggerated by several orders of magnitude in order to study the behavior of this class of 
mutation in detail. 

4.3 Change in mean fitness over time 

Mendel continuously computes the mean fitness of the population based upon the mutation 
content of each individual. Mendel reveals that populations tend to decline in fitness (due to 
the continuous accumulation of deleterious mutations), except when there is a sufficiently 
high rate of beneficial mutations with sufficiently high fitness effects (Figure 4). There is a 
critical point where beneficial mutations are both frequent enough and have a strong 
enough fitness impact to allow stabilization of population fitness. Above this critical point, 
mean fitness can then increase very rapidly. This raises a variety of interesting research 
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problems. For example, what conditions are required to reach this critical point needed for 
fitness stabilization? It appears that when mean fitness is increasing due to just a few high-
impact mutations at a few chromosomal locations, a much larger number of functional 
nucleotides are being disrupted due to relatively low-impact deleterious mutations. The 
latter are genetically linked to the former in the vast majority of cases. Does this mean that 
the functional genome size is continuously shrinking? How might we simulate selection for 
traits which require many beneficial mutations, but none of which are beneficial or 
selectable apart from the others? How might the multitude of functional, but low-impact, 
nucleotides in a genome arise? All these questions can best be addressed using 
comprehensive numerical simulation. 

 
Fig. 4. Fitness trajectory and high-impact beneficial mutations. Change in a population’s mean 
fitness is determined by the net effect of a large number of low-impact deleterious mutations 
and a small number of relatively high-impact beneficial mutations. In this experiment 
Mendel’s default settings were used (beneficial mutation rate = 0.0001), except that beneficial 
fitness effects were allowed to range up to 1.0 (one such mutation would double fitness). In 
5000 generations the mean deleterious mutation count per individual was 47,648, while the 
mean beneficial mutation count per individual was 9.8. As can be seen, just two high-impact 
beneficial mutations largely compensated for over 40,000 deleterious mutations. 

4.4 Selection threshold 

Mendel’s Accountant enables the empirical determination of the “selection threshold“ of a 
given population, which is quantified using a newly proposed statistic, ST. The selection 
threshold concept is key to understanding the big picture regarding the actual capabilities 
and limitations of natural selection within a given population. A population’s selection 
threshold is an emergent property of a population and its exact circumstances. It is the 
consequence of the net effect of all those variables that enhance or interfere with selection 
efficacy. One of the primary variables that limits selection efficacy is the phenomenon of 
selection interference, wherein selection for one mutation interferes with selection for other 
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mutations. This phenomenon has been recognized for a long time, but has until now eluded 
quantification.  

 
Fig. 5. The effects of fitness effect on mutation accumulation. Selection breaks down for most 
low-impact deleterious mutations. In this Mendel experiment, 80% of all mutations were 
made recessive (with 5% expression in the heterozygotic state) and 20% were made 
dominant (95% expression in the heterozygotic state). The rate of deleterious mutation 
accumulation (y axis) ranged from zero (no accumulation) to one (accumulation as if no 
selection). Mutational fitness effect is shown on the x-axis (log scale). As can be seen, 
deleterious mutations with very high impacts are selectively eliminated very effectively, but 
mutations with very low impacts are not affected by selection at all. The selection threshold 
(where the accumulation curve intersects 0.5, shown with a straight line) is where mutations 
are accumulating at half the rate they would in the absence of selection. In this experiment, 
the selection threshold is about one order of magnitude higher (curve to left) for recessive 
than for dominant mutations (curve to right). A similar selection threshold can be plotted 
for beneficial mutations. 

The selection threshold value for deleterious mutations (STd) is defined as the mutational 
fitness effect at which mutations accumulate at exactly half the rate as would occur if there 
were no selection (Figure 5). By parity of reasoning, the selection threshold value for 
beneficial mutations (STb) is defined as the mutational fitness effect at which mutations 
accumulate at twice the rate as would occur if there were no selection (not shown). Mendel 
continuously monitors these selection threshold values during an experiment. We observe 
that the selection threshold is initially very high in all experiments, but drops dramatically 
in the first several hundred generations, and eventually approaches a (minimum) 
equilibrium value. The amount of time required to reach this “selection equilibrium“ is 
strongly affected by population size, with large populations requiring deep time to reach 
their full selection potential (minimal selection threshold). 

Selection threshold values are, to our knowledge, the only available diagnostic of how 
effectively selection can operate under a specific set of circumstances, in terms of eliminating 
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bad mutations and amplifying good mutations. It is worth noting that Kimura’s (1983) well-
known inequality, |s| ≤ 1/(2Ne), is an attempt to estimate the selection threshold based 
upon the random noise inherent in finite population sizes alone. However, many other 
parameters affect the efficacy of selection, including the mutation rate, the distribution of 
mutational fitness effects, environmental noise, mode of selection, and others. The final 
outcome of an experiment largely hinges on the emergent selection threshold values. This 
statistic is the best means to bring together all the “pieces of the population puzzle,“ 
enabling researchers to gauge the long-term genetic health of a population. A low threshold 
value should reflect a healthy population, allowing selection to “see” more low-impact 
mutations, while a high threshold value will reflect a population that is at risk of on-going 
genetic deterioration due to “selection breakdown” for most (low-impact) nuceotide 
positions in the genome. 

4.5 Net effect of linkage blocks 

We know that chromosomes do not recombine uniformly, but have recombinational 
hotspots, which sub-divide each chromosome into numerous “linkage blocks“. There is little 
recombination within a linkage block, so mutations that arise within the same linkage block 
will tend to be transmitted linked together indefinitely, from generation to generation. Mendel 
models this in a biologically realistic way, so that the effects of the linked mutations can be 
studied. This opens the way to study the phenomenon of “Muller’s Ratchet” as it applies to 
individual linkage blocks. Mendel also allows the examination of the relative abundance of 
linkage blocks which have a net fitness gain versus a net fitness loss (Figure 6). 

 
Fig. 6. The net fitness effects of linkage blocks reflect the distribution of accumulating 
mutations. This Mendel experiment employed the default parameters, except 20% of 
mutations were neutral, 1% were beneficial, and the maximal beneficial fitness effect was 
.01. Fitness was nearly stable and rising gradually. Linkage blocks with a net deleterious 
fitness effect are shown left of center, while linkage blocks with a net beneficial effect are 
shown right of center. As can be seen, almost all linkage blocks had a net effect which was 
modestly deleterious. Only 1.7% of all linkage blocks had a net beneficial effect, but that net 
beneficial effect was usually substantial. 
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4.6 Population bottlenecks 

In nature, populations routinely go through bottlenecks in population size. It has been 
proposed that this might be biologically useful in terms of genetically homogenizing a 
population. It has even been proposed that regular downward fluctuations in population 
size might help “pump out” or purge a population’s deleterious mutations. We have used 
Mendel to study episodes of population size contraction in mature populations, and we 
have observed that any episode that even marginally reduces total genetic variation 
simultaneously causes irreversible genetic damage. This is seen as a substantial fitness 
decline that does not fully recover when population size returns to normal, and which 
corresponds to an increased rate of fixation of deleterious mutations and an elevated 
deleterious selection threshold (Figure 7). It appears that it is very problematic to achieve 
homogenization of a mature out-crossing population by bottlenecking without risking 
population extinction. We have also used Mendel to examine cyclic bottlenecking. We 
observe that this does not “pump out” deleterious mutations, but rather “pumps in” such 
mutations due to elevated selection thresholds during each population contraction and a 
correspondingly higher rate of fixation of deleterious alleles. 

 
Fig. 7. The effects of population bottlenecks on average fitness. Population bottlenecks 
sufficient to have any noticeable impact cause irreversible genetic damage in out-crossing 
species. In this Mendel experiment, 1% of all mutations were beneficial, with the maximal 
beneficial fitness effect being .01. Eighty percent of mutations were recessive. After 3000 
generations, population size was reduced from 1000 to 100 for 500 generations, after which 
population size was allowed to expand, restoring the population size (top line) to 1000 (scale 
on right). As can be seen, during the bottleneck fitness declined roughly 30% and failed to 
recover substantially when population size was restored.  

4.7 Allele frequencies 

Mendel tracks allele frequencies. This allows the study of the rate of polymorphism (alleles 
with a frequency of more than 1%), and the rate of fixation (alleles with frequencies over 
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99%). As expected, Mendel shows that the vast majority of new alleles are lost by drift while 
they are still very rare. We see that the maximal number of polymorphic alleles is primarily 
limited by population size and population sub-structure (i.e., sub-populations that seldom 
inter-mate). Likewise, rate of fixation is profoundly affected by population size and 
population sub-structure. The rate of fixation is extremely slow except for relatively high-
impact beneficial mutations, which can fix quite rapidly – in just hundreds of generations. 
Surprisingly, we routinely see that under the most biologically realistic conditions, many 
more deleterious mutations go to fixation than do beneficial mutations (because they arise at 
a much higher rate; Figure 8). Much more work remains to be done to better understand the 
determinants of polymorphism frequencies and rates of fixation.  

 
Fig. 8. Relative abundance of allele frequencies. When beneficial mutations are rare, the vast 
majority of fixation events tend to involve deleterious mutations (distribution to right). 
Drawing from the same bottleneck experiment shown in Figure 7, it can be seen that allele 
frequencies are strongly skewed to the left, meaning that the vast majority of alleles present 
in the population were rare, as is consistently seen. This was particularly true in the case of 
beneficial mutations (distribution to left), which arise infrequently. Although a generous 1% 
of all new mutations in this experiment were beneficial, only 41 beneficial alleles went to 
fixation, while 9327 deleterious mutations went to fixation. 

4.8 Sexual reproduction 

Much has been said about the biological importance of sexual recombination. This can  
most clearly be seen by using numerical simulation to contrast deleterious mutation 
accumulation in a normal sexual popuation and an identical population that reproduces 
asexually (Figure 9). The difference is very dramatic; the asexual population undergoes 
genetic degeneration very rapidly and the decline in fitness is distictly linear, while in the 
sexual population, the fitness decline is modest and approximates exponential decay. These 
findings confirm expectation, because it has long been known that the absence of 
recombination in asexual genomes causes a gravely deterministic decay in fitness known as 
Muller’s ratchet (e.g., see Loewe, 2006). 
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Fig. 9. The effects of sexual reproduction on fitness decline. Asexual populations are subject 
to disastrous fitness decline due to Muller’s Ratchet. A Mendel experiment with default 
settings (except truncation selection was employed) was compared to the same run where 
reproduction was clonal, i.e., without sexual recombination. The upper line represents the 
first run using the default settings, resulting in a relatively modest level of fitness decline. 
The lower line represents the second run where sexual recombination was turned off, 
resulting in a rapid and very linear decline in fitness, causing extinction in just over 5000 
generations. 

4.9 Future developments 

In addition to the features and applications described above, other Mendel features recently 
developed or still under development include simulation of: a) synergistic epistasis; b) 
group selection; c) selection for altruistic traits; and d) analysis of specific sets of mutations 
that any user may upload into a population prior to simulation. Mendel is being modified to 
be compatible with most computer environments. Hopefully many researchers will use this 
program as a platform to develop far superior numerical simulations. 

5. Conclusion 

It is clear that there is great utility in comprehenisve numerical simulations, becaue they 
alone allow us to examine – simultaneously – the many elements of a given population‘s 
dynamics. Not only does this mean we can finally get an integrated “big picture“ view of 
how a population changes, but we can use the same program to examine the same 
population in great detail from many specific vantage points. In light of the examples 
summarized above, it is clear there are numerous research problems which cannot be 
adequately addressed without comprehensive numerical simulation tools. 
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