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Abstract

There is growing evidence that much of the DNA in higher genomes is poly-functional, with the
same nucleotide contributing to more than one type of code. Such poly-functional DNA should
logically be multiply-constrained in terms of the probability of sequence improvement via random
mutation. We describe a model of this relationship, which relates the degree of poly-functionality
and the degree of constraint on mutational improvement. We show that: a) the probability of
beneficial mutation is inversely related to the degree that a sequence is already optimized for a given
code; b) the probability of beneficial mutation drastically diminishes as the number of overlapping
codes increases. The growing evidence for a high degree of optimization in biological systems, and
the growing evidence for multiple levels of poly-functionality within DNA, both suggest that muta-
tions that are unambiguously beneficial must be especially rare. The theoretical scarcity of beneficial
mutations is compounded by the fact that most of the beneficial mutations that do arise should confer
extremely small increments of improvement in terms of total biological function. This makes such
mutations invisible to natural selection. Beneficial mutations that are below a population’s selection
threshold are effectively neutral in terms of selection, and so should be entirely unproductive from
an evolutionary perspective. We conclude that beneficial mutations that are unambiguous (not delete-
rious at any level), and useful (subject to natural selection), should be extremely rare.

Key words: beneficial mutation, probability, multiple codes, overlapping codes, ENCODE, poly-
functional DNA, selection threshold

1. Introduction

It is almost universally acknowledged that beneficial mutations are rare compared
to deleterious mutations [1-10]. However, there is controversy regarding just how
rare beneficial mutations actually are. It appears that beneficial mutations may be
too rare to actually allow the accurate measurement of how rare they are [11]. For
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decades it has been widely thought that beneficial mutations might be as rare as
one in a million [12, 13]. However, more recently some have argued that beneficial
mutations might be much more common [14, 15].

The actual rate of beneficial mutation is a crucial question, because if deter-
mines both the speed and the direction of genetic change. If beneficial mutations
are extremely rare, this profoundly limits the rate and range of all forward genetic
change. Furthermore, to the extent that beneficial mutations may be extremely
rare, the question arises — “how can there be any net gain in total biological
fitness?” This question arises because it is widely recognized that in large genomes
most mutations should have very small effects, and so large numbers of low-impact
deleterious mutations should not be subject to purifying selection [16-33]. This
means that over time large numbers of such deleterious mutations should accumu-
late continuously, leading to ever-increasing genetic load [29-33]. In order to halt
such genetic deterioration, one must invoke the continuous amplification of a large
number of beneficial mutations to fully compensate for all the accumulating
deleterious mutations [34-36].

Fisher addressed the problem of the rarity of beneficial mutations as long ago
as 1930 [37]. He argued that beneficial mutations might be quite common. He
used the illustration of focusing a microscope. A random change in focal length
has a nearly equal chance of either improving or diminishing the focus, assuming
three things: a) the microscope is significantly out of focus, b) the change in focus
is very small, and c) focus is just a one dimensional trait (a single knob — turned
either up or down). We now know that Fisher’s three necessary conditions do not
apply to the real biological world. Biological systems are highly optimized (the
microscope is not substantially out of focus), a beneficial mutation must be subject
to selection, so its biological effect must not be too small (so very tiny changes in
focus are not feasible), and fitness is extremely multi-dimensional (there is much
more to biological functionality than optimizing a single parameter such as focal
length).

Fisher acknowledged that focusing a microscope just involves optimization in
a single dimension, and conceded that to the extent that fitness is not a simple one-
dimensional trait, his analogy would break down. He went on to show that as the
number of “dimensions” of fitness increased, the probability of beneficial muta-
tion should rapidly decrease. This insight was profound, yet in his day he could
not have realized how extremely multi-dimensional biological fitness really is.
Fisher lived before the revolution in biology — he knew nothing of cell biology,
molecular biology, or molecular genetics. We now know that total biological
fitness is multi-dimensional in the extreme. In a sense, every functional nucleotide
within a genome adds another dimension to the fitness equation. So in a sense
Fisher’s allegorical “microscope” has millions of knobs that must be focused
simultaneously and interactively.
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In the last decade, we have discovered still another aspect of the multi-dimensional
genome. We now know that DNA sequences are typically “poly-functional” [38].
Trifanov previously had described at least 12 genetic codes that any given nucleo-
tide can contribute to [39,40], and showed that a given base-pair can contribute to
multiple overlapping codes simultaneously. The first evidence of overlapping pro-
tein-coding sequences in viruses caused quite a stir, but since then it has become
recognized as typical. According to Kapronov et al., “it is not unusual that a single
base-pair can be part of an intricate network of multiple isoforms of overlapping
sense and antisense transcripts, the majority of which are unannotated” [41]. The
ENCODE project [42] has confirmed that this phenomenon is ubiquitous in higher
genomes, wherein a given DNA sequence routinely encodes multiple overlapping
messages, meaning that a single nucleotide can contribute to two or more genetic
codes. Most recently, Itzkovitz et al. analyzed protein coding regions of 700 species,
and showed that virtually all forms of life have extensive overlapping information
in their genomes [43]. So not only are there many “knobs” in Fisher’s microscope
analogy, each one can affect multiple traits simultaneously and interactively.

In light of these new developments, it is timely to reexamine the question of the
probability of beneficial mutation, the utility of Fisher’s model, Fisher’s Theorem,
and Fisher’s insight about multiple fitness dimensions. This paper examines the
probability of a selectable beneficial mutation arising within a DNA sequence that
is functional (hence must be significantly optimized), and contains multiple
overlapping codes.

2. Method and Results
2.1 The Model

For illustration, in Figure 1 we show a hypothetical 100 base pair sequence, which
participates in 12 partially overlapping codes.

Starting Assumptions:

1. We only consider here a “functional sequence”. We assume this sequence is
not primarily “junk DNA”, but that for the most part it encodes information,
yet we allow for rare nucleotide sites within the functional sequence that are
perfectly neutral.

2. Each nucleotide within the functional genome is classified by level (L,—L,,),
depending on how many codes it contributes to. A nucleotide that does not con-
tribute to a given code is considered neutral relative to that code. A nucleotide
which does not contribute to any of the codes is considered perfectly neutral and
will be designated L.
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Position Number
1 10 20 30 40 50 60 70 80 90 100

Genome Section

Code 1
PPPPPPPPPP
Code 2
PPPPPPPPPPPPP
Code 3
PPPPPPPPPPPPPPPPPPPP
Code 4
PPPPPPPPPPPPPPPPPPPP
Code 5
PPPPPPPPPPPPPPPPPPPP
Code 6
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Code 7
PPPPPPPPPPPPPPPPPPP
Code 8
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Code 9
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
Code 10
PPPPPPPPPPPPP
Code 11
PPPPPPPPPPPPPPPPPPPP
Code 12

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

Fig. 1. A model nucleotide sequence of 100 bases that encodes 12 partially overlapping codes.
Each sub-section represents the positions of the Genome Section that participate in that particular
code. For example, only the first 10 positions of the Genome Section participate in Code 1 whereas
all except the last 5 positions of the Genome Section participate in Code 12. Nucleotide positions
of the Genome Section that do not fall into any code are considered entirely neutral with respect to
those codes, since they play no part in what the function of those codes may be. In that regard, these
neutral positions are not part of the functional genome (at least with respect to those specific
codes).

3. Consistent with commonly used evolution models [41, 44—46], we assume the
optimization of a composite organism is determined by a single fitness function.
The contribution of each code to fitness is assumed to arise by aggregation of
constraint commonly found in multi-objective optimization [47-50].

4. We assume a high degree of optimization within each code, although this
assumption can be relaxed, and is a tunable parameter within the model. For
the analysis and discussion we assume 99.9% of the nucleotide positions
defining a code are already an optimal nucleotide.
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5. For those nucleotides that are part of a given code but are not yet the optimal
nucleotide for that code, we assume that only one of the three alternative
nucleotides will be an improvement relative to the existing sub-optimal nucle-
otide. Mutations at such sites will therefore have one-third chance of being
beneficial, but will still have a two-thirds probability of being deleterious.
Another way to say this is that for a given site, relative to a given code, there
is a hierarchy of most desirable nucleotide (ranked first) to least desirable
nucleotide (ranked fourth), and as a rule the non-optimal nucleotide is ranked
second, rather than third or fourth. This reflects the idea that even if
non-optimal, the existing nucleotide is not truly random.

6. We assume independence in the designation of different optimal codes, such
that the nucleotide deemed optimal for a given code (at a position) is chosen
independently of the other nucleotides that are optimal for codes that may
overlap at that position. In other words, for position 1, the first code may view
G as the optimal nucleotide, whereas the second code may consider T the
optimal nucleotide, or both may consider C optimal, etc. Although the nucleo-
tide at a position may be shared by several codes (in the case of overlap), we
assume that a nucleotide for an optimal code sequence is chosen only with
respect to other nucleotides within that same code, and not with respect to
other codes which may or may not overlap with it on the genome section
currently or in the future. Modeling these optimal code sequence decisions as
independent gives rise to the Bernoulli model presented here.

7. Lastly, we make the simplifying assumption that beneficial and deleterious
mutations have “unit magnitude” effects, such that if one of each is present,
their combined effects effectively cancel out (See Discussion).

2.2 Analyses

We analyzed how overlapping codes affect the probability of beneficial mutation
in three ways. The first analysis involved a very simple calculation of how multiple
overlapping codes affect the theoretical probability of an “unambiguously benefi-
cial mutation”. We define an unambiguously beneficial mutation as a mutation that
causes a benefit in at least one code, without causing any deleterious effect in any
other code. The second analysis is more involved, and examines the probability of
a “net-effect beneficial mutation”. A net-effect beneficial mutation is a mutation
that improves more codes than it disrupts. The last analysis involves an empirical
analysis of how overlapping English words (i.e. as in a crossword puzzle), affect
the probability of creating a new valid word.
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2.2.1 First Level of Analysis:

When we consider poly-functional nucleotide sites, it is relatively simple to cal-
culate the probability of mutations which are “unambiguously beneficial” (i.e.,
beneficial in one code, and not deleterious in any other code). For example, let us
assume all codes are 99.9% optimized, (such that 99.9% of all mutations will be
deleterious for any given code). Even for that one-in-a-thousand site which is
sub-optimal, on average only about half of the nucleotide substitutions at such a
site will be an improvement (which in this simple analysis we can ignore). For L,
nucleotides, the rate of unambiguously beneficial mutations will be at best one in
10°, for L, nucleotides this rate will be at best one in 10° and for L, nucleotides
this rate will be at best one in 10°. Generalized, for a L, nucleotide, the rate will
be at best one in 10™. Overlapping codes, by their very nature, make unambigu-
ous mutations vanishingly rare. This means that within all poly-functional nucle-
otide sites, essentially all “beneficial mutations” will at best be ambiguously
beneficial, being beneficial at just one level, but simultaneously being deleterious
at one or more levels. Therefore at any poly-functional nucleotide site, a “benefi-
cial” mutation will almost always still consistently have deleterious effects, sys-
tematically eroding the total amount of information in the entire information
system.

2.2.2 Second Level of Analysis:

We can calculate the probability of a net-effect beneficial mutation for each
nucleotide level (L,—L,,) as described below.

Within a given code, assume that sequences are highly optimized. We use
p(optimal) = 99.9% = 0.999 of all nucleotides being optimal in our recurring
example. In the case of optimal nucleotide bases, any change is deleterious,
assuming no neutral changes. Therefore, only r = 1 — p(optimal) = 0.1% = 0.001
are subject to beneficial mutation. There are no absolutely neutral positions in any
given code, because by definition such a position is not part of that code. The
conditions for net beneficial or net deleterious changes, therefore, are as follows:

To be a net-beneficial mutation:

e The current nucleotide in that position must be non-optimal AND
e The change must be to a beneficial nucleotide, which occurs with a 1/3 prob-
ability, denoted as

p (beneficial | non-optimal)
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To be a net-deleterious mutation:

e The current nucleotide in that position can be optimal OR
* The change must be to a deleterious nucleotide, which occurs with a 2/3 prob-
ability, denoted as

(1 — p(beneficial | non-optimal))

Given these assumptions, we calculate the probability that for a single code a
mutation at a uniformly random chosen position is beneficial as follows, according
to the law of total probability:

p (B) -
p(non-optimal) x p(benefical |non-optimal)+p(optimal) x p(benefical | optimal)

= p(non-optimal) xp(benefical | non-optimal) + 0

= (1-p(optimal)) X p(benefical | non-optimal)

= r x p(benefical | non-optimal)

Given the stated assumptions, for any single code, a mutation at a position
chosen at random that mutates has a probability of being a beneficial (B) muta-
tion equal to p(B) = (1/3)r = 0.00033. This, in turn, means that a random
position that mutates has a probability of being a deleterious (D) mutation
equal to 1 — p(B) = 0.99967.

A mutation occurring to a single nucleotide may be beneficial or deleterious for
any given code (as per previous discussion, neutral cases are excluded). Let’s con-
sider a few specific cases before generalizing:

(1) If the nucleotide is a L, nucleotide then there is only one possibility: a mutation
will be either beneficial (B) or deleterious (D) with p(B) = 0.00033 and 1 —
p(B) =0.99967.

(2) If the nucleotide is a L, nucleotide then there will be four possibilities: 1) a
mutation may be beneficial for both codes (B,B); 2) a mutation may be benefi-
cial to the first code and deleterious to the second code (B,D); 3) a mutation
may be deleterious to the first code and beneficial to the second code (D,B)
or, 4) a mutation may be deleterious to both codes (D,D). For such nucleotide
positions, there is a value for each code, each of which is either beneficial or
deleterious. We will make the simplifying assumption that where there is a
beneficial effect in one code and a deleterious effect in another code, these
effects will essentially cancel, leaving a neutral effect. Therefore (B,B) will be
beneficial, (D,D) will be deleterious, while (D,B) and (B,D) will be neutral. In
this case,
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p(beneficial) = p(B,B) = p(B)* = 1.11 x 107’
p(neutral) = p(B,D) + p(D,B) = 2 x p(B) x (1-p(B)) = 6.66 x 10™*
p(deleterious) = p(D,D) = (1-p(B))* = 0.99933

(3) In all other cases, where more than two codes are involved, there can be more
than two factors to consider. For example, for L, positions, there are three
levels of mutational effect.

(4).If the nucleotide is a L, nucleotide, there will be 2" possibilities. To
generalize:

Let L, be the level of a particular nucleotide. Combining all of the above, and
formulating the binomial within our model parameters, if there are N codes and an
L-level nucleotide, then the probability of a beneficial mutation for this L-level
nucleotide, p(B),, is obtained with the binomial distribution [42]

L

L
pB)L= D [ ]p(B)"(l—p(B»L‘" 1
k{ ﬂ] k (1)
2

where L is the number of codes, [LTH-I is the minimum number of codes that
constitute a majority (with the brackets denoting the ceiling function), and

p(B) = (1-p(optimal)) x p(beneficial | non-optimal)
with p(optimal) denoting the probability that a nucleotide is already optimal.

In similar fashion, the probability of a deleterious mutation for this L-level
nucleotide, p(D),, is obtained with:

L

L -
p(D)y = 3 | |pB) - pB)f 2)
Lr\k
2
2
In general, the probability of a neutral mutation is

p(neutral), =1-(p(B), +p(D)r)
[Lj L 3)
=| 1 |(p(B)(1-p(B))* X (L is even)
2

where O (L is even) is one when L is even and is zero otherwise. When L is even,
p(B), = 1-p(D), . For p(B) << 1 (in other words, when p(B) is near zero), this
becomes approximately true for large odd L.

The value of p(B), (the probability of a beneficial mutation) in equation (1)
rapidly goes to zero for increasing L when p(B) << 1. Because differentiating
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between of probabilities like 107" and 107 is intuitively challenging, we propose
use of the information measure [51, 52, 53]

1 [L+] = _Ing(p(B)L)

I[L,] measures the probability in terms of flips of a fair coin. If /[L,] = 3 bits,
for example, the corresponding probability is the same as forecasting the result of
three flips of a fair coin, i.e. p=(¥2)*=0.125. I[L,] = N bits corresponds to a prob-
ability of p = (Y2)". To place this measure in perspective, there are 10'° square
millimeters in an area of 1000 square kilometers. The probability of two people
choosing the same square millimeter is thus 107", Since —log,(10-'%) = 50 bits, the
success probability is the same as the probability of predicting 50 sequential
outcomes of the flipping of a fair coin.

A plot of I[L,] is shown in Figure 2 as a function of L for various values of r, where
r = 1-p(optimal). The plots rapidly approach improbable values. For r = 0.001, a
value of L = 12, p(B), = 4.15 x 107* or I[L,] = 71 bits. The chance of choosing the
same millimeter twice in a distance of 100 light years (107?') is more probable.

100 ‘ ; 107
------ r=0.1
-- r=0.01
— r=0.001
80 | 1102
60 PP
1L,) e #(B);
40 e {102
20 | B {107
0 ‘ ‘ ‘ 1
5 10 15

Number of Codes (L)

Fig. 2. Plot of I[L,] (information, in bits) versus L for various values of r = 1 — p(optimal). Even
numbered codes are omitted for clarity. Since the probability of a beneficial mutation, p(B),,
decreases exponentially with increasing L, the logarithmic information measure I[L,] increases
linearly with increasing L. The right-hand scale indicates the probability of net beneficial mutation,
using standard scientific notation. The three lines represent the cases where the overlapping codes
are weakly optimized (10% of nucleotides are sub-optimal), moderately optimized (1% of nucleo-
tides are sub-optimal), and highly optimized (0.1% of nucleotides are sub-optimal).
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Our analysis suggests that increasing either the number of overlapping codes or
the degree of optimization has negative effects on the probability of producing a
beneficial mutation. A high degree of optimization makes beneficial mutations
unlikely — even when considering just one code. As more codes are considered,
the probability of beneficial mutation diminishes rapidly, as is shown in Figures 3,
4 and 5. The ratio of beneficial to deleterious mutations decreases so rapidly that
for L, nucleotides in highly optimized sequences, the number of deleterious muta-
tions expected before the first beneficial arose would be greater than the genome
size of a typical bacterium. For L, nucleotides, the number of deleterious muta-
tions expected before the first beneficial arose would be greater than the genome
size of a typical mammal. While relaxing the optimization assumption reduces the
severity of the problem (as can be seen in Figure 4), increasing the number of
overlapping codes diminishes the likelihood of attaining a net beneficial mutation
even for weakly optimized systems. If we allow, within a functional sequence, for
overall optimization values as low as 50%, deleterious mutations remain roughly
a thousand times more likely than beneficial mutations in the presence of twelve
overlapping codes. As the organism becomes more optimized, the probability of
receiving an overall beneficial mutation falls rapidly.

p(B);

0.05°

0.2
20 - 0.4

Number of Codes (L)

Fig. 3. Number of Codes (L) and p(optimal), plotted against p(B),, for one to one-hundred codes,
showing the general behavior of the model as L increases. The probability of an overall beneficial
mutation, p(B), , decreases exponentially with increasing L.

(Note: The spikes on the surface of the plot, visible near the rear plane of the figure, result from
the difference between the majority of an even number of codes and the majority of an odd number
of codes. For example, six is the majority for ten codes (60% of total); whereas six is also the major-
ity for eleven codes (only 54% of total). The disparity declines with increasing L.)
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We are forced to conclude that the poly-functionality of DNA profoundly
affects the expected rate of beneficial mutations. The growing evidence for poly-
functional DNA therefore suggests that unambiguously beneficial mutations
should be vanishingly rare.

2.2.3 Third Level of Analysis:

To further test the effect of multiple constraints on the appearance of beneficial
mutations, we constructed a simple poly-constrained artificial system based on
English crossword puzzles. Crossword puzzles, for our purpose, are simply coll-
ections of words with overlapping, shared letters among some of the words.
Figure 6 contains an illustration of such puzzles. We are most familiar with
two-dimensional crossword puzzles, where up to two words may share a single
letter, but crossword puzzles can be extended to many dimensions. An L-dimensional
crossword puzzle is here defined as a collection of words, such that up to L words
may share a single, overlapping letter, for one or more letters in the puzzle. Each
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Fig. 4. p(B), for different p(optimal) using a fixed p(beneficial | non-optimal) value of 0.34. Even
numbered codes are omitted for clarity. If more than 80% of nucleotides are optimized, the
probability of a beneficial mutation is near zero for L > 5.
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0.16f

p(optimal) = 0.50
p(optimal) = 0.75
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1 L

10 15
Number of Codes (L)

20 25

Fig. 5. Exponential decay of p(B), as the number of codes (L) increases. Even numbered codes are
omitted for clarity. The line for p(optimal) = 0.999 is indistinguishable from the horizontal axis.

POLY-CONSTRAINED ARTIFICIAL SYSTEMS

[F] NG
[DIEIM[O[C[R]A[T[1 [C] ATA
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Ol M 3
| E] ik
A
L)

TWO-DIMENSIONAL PUZZLE

THREE-DIMENSIONAL PUZZLE L-DIMENSIONAL

Fig. 6. Crossword puzzles are familiar poly-constrained systems. Intersecting words create
constraints on overlapping letters, such as the E of FILE in the first puzzle. Although a viable,
functional mutation may change FILE to FILL, this would simultaneously change INTOLERANT
to the non-functional INTOLLRANT, a non-word. As we increase the number of dimensions, the
number of overlapping words can increase as well, further preventing beneficial changes.

overlap forms a constraint on our puzzle, which limits the possible letters that are
allowed in a given position. Increasing the number of words that share a single
letter increases the number of constraints on that particular letter, and limits
the number of values that letter position may take.
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It is known that English words can be transformed into other English words via
substitutions of single letters, such as changing the T in RAT to a P, forming RAP.
When a letter is constrained within a puzzle, however, changes can affect more
than one word simultaneously. A change to a letter may result in a new English
word at one level, but render a second word that shares the letter non-functional
(non-English). For example, if we have both DOG and GRATEFUL overlapping
in a puzzle and sharing a common G, then changing DOG to DOT would change
GRATEFUL to the non-English TRATEFUL, which is a deleterious change.
However, in some cases we can make an overall beneficial substitution, such as
when DOG and GO overlap on the G, and we change GO to the word TO. If our
model is correct, then increasing the number of words that overlap should nega-
tively affect the probability of overall beneficial mutations occurring. Therefore,
using our simple artificial system, we examine the degree to which overlapping
constraints prevent net beneficial mutations from occurring in L-dimensional
crossword puzzles. In this section, we define a beneficial mutation as any change
in a word that results in another English word, for a non-optimal position. Mutated
words were checked against a text file containing 113,809 official Scrabble® words
to confirm whether or not they were functional English words, and if they were
found in the file, the change was counted as beneficial for that word, as long as the
word was not already optimal. If multiple words were changed by a single mutation,
we compared how many of the changes were beneficial to how many were deleteri-
ous. When the majority of the changes were beneficial, the mutation was counted
as beneficial.

We tested groups of 1, 3,5, 7, 9 and 11 words that contained an overlapping,
shared letter. To construct the groups of words, we randomly selected a single
letter from the alphabet with uniform probability, and randomly selected a sam-
ple of L words containing the letter uniformly from our list of possible words. We
assumed the overlap occurred at the first instance of the chosen letter within each
word. This resulted in an L-dimensional puzzle, with the shared letter being the
single point of overlap among all words.

Next, we selected a new letter at random from the alphabet (excluding the cur-
rent letter) with uniform probability, and changed the letter in each of the words.
If the change resulted in other English words for the majority of the words in our
group, we counted the mutation as beneficial overall. We also introduced a notion
of optimization, so that the overlapping letter had a probability, p(optimal), of
already being the ‘optimal’ letter at that position, meaning that for all the possible
words that could occur by varying that letter, the current one was already the best.
If a word was already optimal, then any mutation at the shared letter counted as
deleterious, regardless of whether or not it resulted in another English word.

Figure 7 shows the results of our tests, based on ten-million empirical trials.
We found that the estimated probability that a uniform random letter change to a
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randomly selected English word would result in another word was roughly 1.65%
(using a p(optimal) value of 0.0). As we increase either the level of optimization or
the number of overlapping words (L), this probability drops as expected. If more than
five overlapping words are present, then the probability of making a change that is
beneficial for the majority of words on the shared letter is empirically less than one
in 10". For eleven overlapping words (similar to eleven overlapping codes in our
biological model), we were unable to find a single example of an overall beneficial
change during our tests. Therefore, we find the same dearth of unambiguously benefi-
cial mutations in simple poly-constrained systems such as crossword puzzles, due to
constraints imposed by the presence of interlocking, mutually dependent systems.

2.2.4 Summary of Results:

Having overlapping genetic codes profoundly reduces the probability of beneficial
mutation. This is most dramatically seen when we consider unambiguous
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Fig. 7. Empirical results from ten-million trials, plotting the probability of achieving an overall
beneficial mutation, p(B),, when mutating a shared letter among L words. Beneficial mutations were
defined as changing a non-optimal word (with probability determined by p(optimal)) to another
English word. Graph contains data points for odd numbered L only. The line for p(optimal) = 0.999
is indistinguishable from the horizontal axis.
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beneficial mutations — which are not deleterious for any one of the overlapping
codes. For example, for those nucleotides that contribute to just three different
overlapping codes, assuming each code is 99.9% optimized, less than one in a
billion mutations will be unambiguously beneficial. For net-effect beneficial
mutations, having three overlapping codes still reduces the probability of benefi-
cial mutation down to less than one per 10°. When we experimentally test our
basic model using a real information system (overlapping English words in the
context of a crossword puzzle), we see empirical confirmation of our genetic
analysis (even though our only requirement is that a letter substitution creates a
new valid English word). Assuming no optimization (namely p(optimal) = 0.0),
the probability of having a productive letter substitution within a single word is
1.65%, but when a letter substitution occurs where just three words overlap and
p(optimal) > 0.75, the probability drops to 7.64 x 107. For nine overlapping words
and p(optimal) > 0.75 it drops to less than 10~". Our results clearly show that over-
lapping codes reduce the potential for beneficial mutation in a most profound way,
even for moderately optimized systems.

3. Discussion

Beneficial mutations in nature appear to be so rare that after decades of research
we still cannot empirically determine just how rare they are [11]. This suggests
they are very rare indeed. There are many reasons to believe that beneficial muta-
tions must be very rare. A mutation is a component of an organism’s genetic speci-
fications. Specifications are, by definition, specific. For life to be life requires an
exquisite degree of specification — optimization that is hard for us to understand,
involving global integration of thousands of systems which have hundreds of
thousands of interactions [54]. What is being specified are all the instructions for
the establishment, maintenance, and operation of a network of countless biological
functions. These functions are integrated into a single elaborate system that is
more complex than anything man has ever designed. Each biological specification
is encoded by strings of characters (nucleotides or amino acids) that are very
specific (and hence very unlikely), with each character having meaning only in the
context of many other characters — like letters in a book or like the binary bits
comprising a computer code. Any random change in such a set of specifications
causes some loss of useful information — with a very high degree of probability.
The more that each character is contextually interactive with other characters, the
less feasible it becomes to improve a set of specifications via random character
changes, because each character is multiply constrained by its many contextual
relationships.
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It has often been argued that life’s specifications must be very unconstrained,
citing “junk DNA”, synonymous sites in protein coding regions, and the general
concept of “bad design”. However since the ENCODE project the term “junk
DNA” has been largely abandoned [42,55]. “Synonymous mutations” have been
shown to be biologically very important [56]. Arguments of bad design have
assumed we understand every possible design constraint for a given biological
component — which seems unreasonable in light of evidence for poly-functionality
of most biological components.

It is now clear that biological systems are very robust and can tolerate much
genetic damage. While many in the past have argued that this is due to a general
lack of specificity (many sequences will do), this no longer seems reasonable.
It now seems more likely that biological systems are robust because of many levels
of auto-regulation, self-correction, and countless back-up systems. The new field
of systems biology informs us of near-optimality in biological systems, and this
appears to be ubiquitous. Such ubiquitous optimality is only conceivable given
extremely specific (hence extremely constrained) genetic specifications. Such
nearly-optimal genetic specifications should inherently be very difficult to
improve, especially when limited to changes which only arise as rare, random, and
isolated events.

The discovery of ubiquitous poly-functional DNA is profound, and forces us to
reassess our understanding of the degree of genetic specificity and the probability
of beneficial mutation. Trifanov pioneered the concept that genomes have a mul-
tiplicity of codes and such codes can overlap [40,41]. He showed that a given
nucleotide site can participate in multiple genetic codes (with the standard protein
code being just being one such code). This is the basic meaning of “poly-functional
DNA” [38]. Regrettably, Trifanov’s profound discovery generated limited interest.
However the ENCODE project has validated the importance of his ideas, and has
shown that poly-functional DNA appears to be ubiquitous in higher genomes.

To illustrate how a single nucleotide pair can participate in many different
codes, let us consider some of the multiple functions a given nucleotide can
participate in (each of these modes of functionality has its own code). A given
nucleotide could be: 1) part of an isochore structure; 2) part of a nucleosome
binding site; 3) part of a cohesion binding site; 4) part of a transcriptional promoter
or enhancer; 5) part of numerous forward-strand RNA transcripts, each with its
own transcriptional start and stop points; 6) part of numerous reverse-strand RNA
transcripts, each within its own transcriptional start and stop points; 7) part of an
mRNA splice site; 8) part of an antisense RNA; 9) part of a nucleo-protein
complex; 10) part of several alternately-spliced proteins within the source genic
region; 11) part of several alternately-spliced proteins between different genic
regions; 12) part of the genome which regulates alternative splicing of proteins; 13)
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part of the 3-dimensional organization of the chromosome; 14) part of the
3-dimensional organization of the entire genome; 15) part of the machinery which
transports genic regions to active regions of transcription within the nucleus; 16)
part of a site for attachment to the nuclear membrane; and 17) part of other
undiscovered coding structures.

Given that a single nucleotide pair can potentially participate in so many dif-
ferent codes simultaneously, it should be obvious that this allows data amplifica-
tion without increasing genome size, and so reflects a very sophisticated form
of data compression. One interesting requirement of overlapping codes is that
each code must be partially “degenerate” (imperfect) to create the “flexibility”
required to allow other overlapping codes. Such degeneracy might appear to the
casual observer as an example of bad design, but would actually reflect extreme
optimization.

Poly-functional DNA has several implications. Firstly, it is difficult to under-
stand how poly-functional DNA could arise through random isolated mutations. In
illustration, when we write, it is difficult to compose a good paragraph (although
with training our minds accomplish this with apparent ease). It involves a great
deal of optimization because the letters interact, the words interact, the sentences
interact, and the ideas interact. But imagine if it was required that such a paragraph
had to also have several other messages, using different languages, embedded
within it (i.e., using every-other-letter codes, or by reading parts of the message
backwards). It would obviously be vastly more difficult to compose a coherent
paragraph. The chance of random letter changes creating these types of overlap-
ping messages (in multiple languages) seems incredible, and the chance that
natural selection could sort out all the possible interactions also seems
incredible.

Given an existing poly-functional DNA sequence, it would seem inordinately
difficult to improve it via random mutation. This is at the heart of this paper’s
analysis. Poly-functional DNA by its very nature is ultra-specific, highly-optimized,
and hence highly-constrained. This paper shows that when a nucleotide participates
in more than one code, a mutation at that site is going to almost certainly be
deleterious relative to the first code, and even when a mutation is beneficial in the
first code, it will still almost certainly be deleterious in one or more of the other
codes. Hence a mutation at a poly-functional site will at best be only “ambiguously
beneficial” — still being deleterious at one or more other levels. The exact degree
to which nucleotides participate in two or more codes is still unknown, but if it is
at all common, it should profoundly reduce the probability of mutations which are
unambiguously beneficial.

Mutations that affect more than one code are pleiotropic, in that they have
multiple biological effects. This is consistent with what geneticists have known for
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many decades — most known mutations are pleiotropic at some level — affecting
more than one biological trait. In the case of most human genetic pathologies, the
multiple effects of a mutation are usually all negative. In the rare case of an
ambiguously beneficial mutation, a certain beneficial effect will be combined with
one or more deleterious effects (for example, carriers of the mutation for sickle
cell anemia are more resistant to malaria — but suffer from impaired hemoglobin
function and reduced red blood cell counts).

In our analysis we have for simplicity assumed that if a mutation has a single
beneficial effect and a single deleterious effect, it is counted as neutral. However
this is not realistic because we can logically expect most such ambiguous muta-
tions to have a net deleterious effect. This is because, not only is it more likely for
a random change to damage an optimized system than improve it, the nature of
that damage will tend to be more pronounced than any potential improvement.
Within a highly optimized genetic system, mutational damage can range from very
slight to lethal — but improvements will consistently be only very slight. For
example, certain spelling errors in a plane’s assembly manual could cause the
plane to fly twice as slow, but no spelling error can be expected to cause the plane
to fly twice as fast. Therefore selection for the ambiguous beneficial mutation is
especially problematic — the positive and negative effects will tend to cancel out,
but the deleterious effect will tend to overshadow the beneficial effect.

The analysis in this paper provides strong evidence that the discovery of multi-
ple overlapping codes requires us to re-adjust downward our estimates of the rate
of beneficial mutation. At the same time, the newly emerging field of systems
biology strongly points to a very high degree of optimization in all biological
systems, and this also requires us to adjust downward our estimate of the rate of
beneficial mutation. Lastly, there is clearly a selection threshold [57], wherein
below a certain limit, all low impact beneficial mutations must become invisible
to natural selection. Using realistic biological conditions, it appears that in a large
genome, at least 99% of all beneficial mutations should be so subtle as to
be un-selectable [57]. So the rate of useful beneficial mutations should be at least
two orders of magnitude less that the rate of actual beneficial mutations. Taking
this into consideration, this suggests we should reduce the probabilities reported
in this analysis by another two orders of magnitude. Although we do not quantita-
tively analyze the problem of drift in this paper, it is important to note that the vast
majority of beneficial mutations that do arise, and are above the selection thresh-
old of the population, are still lost due to genetic drift.

Logic and mathematical analysis persuade us that unambiguous beneficial muta-
tions should be extremely rare. This is consistent with the apparent absence of docu-
mented mutations that are unambiguously beneficial (i.e., beneficial at one or more
levels, while not deleterious on any level). To our knowledge there is no case of a
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mutation which is unambiguously beneficial and which has been shown to distinctly
improve the inner workings or an organism. Certainly there are numerous docu-
mented cases of simple adaptations to an external environment factor, but these
special cases have little bearing on how most of the information within a genome
arose — because most of a genome’s information specifies life’s internal workings.

The long-term E. coli experiments of Lenski et al. [58] have been widely
acclaimed as “proof of evolution before our very eyes”. Such evolution would
suggest that numerous beneficial mutations were arising. It is useful to examine
these claims more carefully. The E. coli in these long-term experiments (which
involved vast numbers of cells over vast numbers of generations), did not appear
to evolve any new functions. The only changes that were observed involved adap-
tations to the specific artificial growth medium. This type of adaptive change to an
external factor is only a superficial improvement — it does not explain how the
E. coli genome arose, nor how the information specifying the bacteria’s internal
workings arose. Moreover, those studies failed to show any specific mutation
which was unambiguously beneficial. In fact, it is clear that most of the adaptive
mutations involved loss of function mutations — including deletions of genetic
material [59]. It should be obvious that genetic material not essential for a given
environment, if inactivated or deleted, can decrease metabolic load, and so can
allow more total growth in that given medium. But all such broken genes and
deletions clearly involve a net loss of information, and there is no question that the
resulting bacteria became less “fit” in the broader and truer sense. Such strains of
bacteria would immediately go extinct in virtually any natural environment.

In that enormous evolutionary experiment, the closest instance to an unambigu-
ously beneficial mutation was a mutation that allowed the bacteria to utilize citrate
from the artificial medium [60]. However, this did not actually involve evolution
of a new function — the E. coli already had all the machinery needed for metabo-
lizing citrate, but the citrate could not normally pass through the bacteria’s exter-
nal membrane. In light of the work of Behe [61], in such a case the most likely
explanation for this mutant strain would be a loss-of-function mutation that would
result in a leaky membrane. Certainly no exhaustive research was done to prove
that the mutation in question had zero deleterious effect.

3.1 Possible Objections

Contrary to the thesis of this paper, some scientists have argued that beneficial
mutations might be extremely common — even approaching 50% of all non-
neutral mutations [14,15,37]. The concept that beneficial mutations might be
extremely common traces back to some simple mental constructs suggested by
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Fisher [37]. Fisher’s most famous illustration was the example of focusing a
microscope. If the microscope is significantly out of focus and one makes a small
random adjustment, there is roughly a 50% chance of improving the focus (this
would only be true for extremely small adjustments). Fisher argued that in the
same way, a very low impact mutation might have roughly a 50% chance of
improving fitness (in his day the near-neutral mutation problem had not yet been
identified, and he apparently did not consider that such a low-impact mutation
might be inherently un-selectable). When Fisher developed this illustration, DNA
had not yet been discovered, genes seemed to be very simple (beads on a string),
and the nature of mutation was unknown. With the advent of molecular genetics it
is now evident why this analogy simply is not applicable.

Fisher knew mutations happened, but he did not know what they really were.
We now know mutations are essentially spelling errors in the assembly manual of
the cell. There are some small isolated parts of the genome (such as gene promot-
ers), which can act like an electric rheostat or like a microscope’s focusing
knob. Mutations within these special regions can raise of lower a gene’s expres-
sion level — and in this special case mutations that can increase expression can
conceivably be almost as common as those that decrease expression. For example,
mutations in the promoter region of the growth hormone gene might cause either
giants or dwarfs. These special variable switches within DNA appear to function
for the purpose of fine-tuning a trait such as height. But these special cases do not
reflect the true nature of total fitness (total biological functionality), and do not
reflect the way most of the genome functions. A change in height can only result
in two possibilities — taller or shorter. But overall biological fitness is inherently
multi-dimensional, it involves a multitude of separate traits and is contingent upon
millions of nucleotides, and requires very precise genetic specifications. When a
single trait is defined by just 100 functional nucleotides, that trait’s genetic opti-
mum is an extremely specific set of 100 base pairs (one specific set of 4'® sets, or
one in 10%). If that trait is anywhere near its optimum, then there are a multitude
of mutations which can make the trait worse, but there are very few opportunities
to make the trait better. This is analogous to a random letter change in a text that
results in a superior text. As a message becomes more and more complex and
refined, a text change must be more and more specific in order to enhance that
message, and hence the greater the constraint for achieving improvement via any
random change. As this paper shows, the recent discovery of poly-functional DNA
vastly compounds this problem. To his credit, Fisher acknowledged that the
chance of improvement via a random change must approach zero — either when
the focus is already nearly optimized, as the size of the change in focus grows
larger, or as the number of dimensions defining the trait (i.e., overall fitness)
becomes larger [37].
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There is another aspect of Fisher’s theoretical work, which arose because he did
not understand that genes specify information and that mutations are just errors in
genetic specifications. Fisher imagined that all biological variation arose sym-
metrically. In the case of the focusing knob on a microscope, the knob turns
equally well both ways, and Fisher imagined this would be equally true for muta-
tions affecting any biological trait — such as height or vigor. There would be just
as many mutations that increased performance as diminished it. This is the error
underlying Fisher’s famous “Fundamental Theorem of Natural Selection™ [37].
Given a population with performance levels following a bell-shaped curve, he
reasoned that any level of selection will always remove at least some of the under-
performers and will favor at least some of the higher performing individuals. This
would consistently yield higher mean performance in the next generation. He then
assumed new mutations would arise creating new variation symmetrically around
the new mean. This is what led Fisher to believe he had a mathematical proof that
continuous evolutionary improvement was unavoidable. But we now know that
mutations are essentially word-processing errors in the DNA, so new variation will
be extremely asymmetrical and will be almost exclusively deleterious. So, for
example, apart from a small set of mutations within its promoter region, mutations
deleterious for a gene’s function will be much more common than mutations for
enhanced function — invalidating Fisher’s Theorem, and negating his simple
microscope analogy.

When we consider the organism as an integrated whole, we conclude beneficial
mutations should generally be very rare for the reasons discussed above. We can
only rationalize that beneficials might be common when considering one tiny
component of fitness at a time, such as height. When we do this we artificially
make fitness seem one-dimensional — analogous to Fisher’s example of focusing
his microscope. Within this very limited context, most of the constraints on what
constitute a “beneficial” mutation disappear. For example, in terms of malaria
resistance, a deleterious mutation in the hemoglobin gene can be defined as “ben-
eficial”, even though it is actually a semi-lethal mutation. Under this type of very
limited one-dimensional analysis, the rate of beneficial mutation can appear much
higher than it really is. This is especially true in the case of those rare mutations
that strongly interact with major environmental factors that are external to the
organism (i.e., antibiotic resistance). Relative to just that single component of the
entire biological system, one can expect a reasonable probability of beneficial
mutation. This is because any genetic change that interacts with that specific
external factor has a nearly equal probability of making that factor’s impact either
better or worse. This allows biological fine-tuning for a single isolated trait, rela-
tive to a single external factor. In these special cases Fisher’s microscope analogy
has some validity, so that relative to that single trait (or within a single code),
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random mutations can have a reasonable probability of being beneficial. This may
explain why most examples of beneficial mutation involve a form of adaptation to
a local condition. However, most genomic information does not involve adapta-
tion to specific high-impact external factors, but rather specifies a labyrinth of
complex, integrated, and optimized biological functions internal to a living
system. The important distinction between adaptation to some local external
condition versus maintenance of total genomic integrity is illustrated by a recent
study. That study showed that specific adaptive mutations within a mutagenized
population, when tested in a particular environment, obscured, but did not halt
genetic degeneration [62].

A few recent studies have inferred extremely high beneficial mutations rates,
based on data from mutation accumulation (MA) experiments [14,15]. These MA
experiments have significant problems. No actual mutations were actually seen,
the beneficial and deleterious mutation rates were only inferred based upon the
differential growth rates of a limited number of isolated strains. These experiments
were not capable of identifying the vast majority of subtle mutations that arose in
the populations. They could only detect those few mutations that had large effects
and affected a single trait (growth rate on a given medium) making inferences
about total mutation rates entirely unwarranted. The observed effects in these two
studies could be attributed to a specific one-dimensional adaptation, which could
arise due to a specific mutational hotspot, or could even be due to an epigenetic
effect. Lastly, unintentional selection could not be rigorously precluded.

Given the one-dimensional nature of these MA experiments, a relatively high
rate of beneficial mutation is not unexpected because only one trait was measured,
making fitness appear one-dimensional (like Fisher’s microscope), or like a simple
one-dimensional trait such as height. In both of these studies, fitness was meas-
ured only in a very narrow sense and in a very specific and unnatural environment.
Instead of total fitness, what was being measured was the degree of biological
fine-tuning to a very specific and very artificial circumstance. In one case [14], the
researchers tested the ability of yeast strains that were initially grown under mini-
mal selection conditions (to allow mutations to accumulate), to then grow slightly
faster than the source strain in the same artificial medium where the mutations had
been accumulating. In that study 5.75% of the derived lines grew faster than the
parental strain, under those specific conditions. In a very similar yeast experiment
[15], the researchers again minimized selection to allow mutation accumulation,
and then tested derived strains for ability to compete with the parental genotype in
artificial medium. In the second study 25% of the derived lines out-grew the
parental strain. In both cases the researchers used extremely narrow and unnatural
criteria for measuring “fitness”, and the singular traits they focused on might
easily have been affected (for better or worse) by very simple genetic or
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epigenetic variations. However, natural selection, as it occurs in the natural world,
must act on “fitness” in a much fuller sense — it must involve all heritable traits,
all functional nucleotides, all codes, all relevant environments, and all phases of
the life cycle. The authors of one of these two studies freely acknowledge these
types of limitations on the interpretation of their study (including the possibility
of unintentional selection) and state: “the large proportion of beneficial mutations
observed in our experiment may in part reflect a combination of factors: the
ancestor’s distance from the fitness optimum, yeast’s recent genome duplication,
our examination of only a single environment and life-history stage, and the
recessive nature of deleterious mutations” [14].

The two isolated reports mentioned above, which claim very high rates of
beneficial mutation, are inconsistent with a much broader range of observations.
For example, the net effect of currently observed human mutation is universally
recognized as being distinctly deleterious, and hence clearly represents a serious
problem in terms of public health. This is made obvious by the fact that there are
thousands of Mendelian pathologies documented in man, in spite of the tendency
for natural selection to eliminate such mutations from the population. Conversely,
there are only a handful of putative beneficial mutations commonly cited for man,
despite the tendency for natural selection to amplify such mutations. Moreover,
the “benefit” of most such mutations is typically equivocal, usually being defined
as beneficial in only a very narrow sense (as in the case of sickle cell anemia).

Another possible argument against the thesis of this paper might be that it is
contradicted by a substantial volume of scientific literature that uses DNA
sequence comparisons to infer historical positive selection events for great num-
bers of putative beneficial mutations. It is important to realize that the vast
majority of the putative beneficial mutations claimed in these papers are just
observed alternative nucleotides — with no known biological function (the pre-
sumed benefits being inferred, not being in any way understood or observed). We
naturally acknowledge the operation of selection for beneficials in the past, but
argue that such selection is severely constrained by the reality of very low rates of
beneficial mutations, as this study and common sense both demand. It is notewor-
thy that a significant part of this body of literature that claims proof of so much
positive selection in the past (based upon observed sequence variability in the
present), may suffer from systematic error and is now being challenged [43,54,55].
Inferences of specific positive selection events in the past, based solely upon
sequence data and allele frequencies, are mere historical inferences. The observed
sequence variations might be explained using alternative mechanisms such as
differential mutation rates or ordinary statistical fluctuations.

A final possible argument against the thesis of this paper might be that our
analysis involved point mutations, but did not consider duplications. Some might
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argue that genetic duplications are especially likely to be beneficial. However in
terms of immediate effects, duplications are more likely than other mutations to
cause harm. Duplications are more likely to be immediately deleterious because
unlike point substitutions, they scramble the genome — causing frame shifts and
generally disrupting genomic context and architecture. Like the duplication of
letters, words, or paragraphs in a regular text — genomic duplications add noth-
ing, but systematically disrupt context. Furthermore, unlike other types of muta-
tions, duplications increase metabolic load for the host cell in terms of DNA
replication, repair, transcription, and translation. So if a duplication is neutral in
terms of information, it is then by definition a deleterious mutation due to
increased metabolic cost.

Can it be argued that even if duplications are not immediately beneficial, they
might still be beneficial in the long run, producing large reservoirs of “junk DNA”,
which could then serve as a breeding ground for future evolutionary “experimenta-
tion and innovation”? The concept of building up a large amount of “junk DNA”
in the genome for possible long-term evolutionary benefit has several flaws.
Firstly, the most recent evidence [35,54] suggests that the genome is mostly func-
tional and that so there is little junk DNA. Secondly, the huge metabolic cost of
junk DNA would be immediately deleterious. Thirdly, long-term benefits would
be remote and hypothetical, while selection only operates in the present and can-
not anticipate future benefits. Fourthly, even within junk DNA, mutations can still
be deleterious due to negative interactions with the functional genome. Lastly, the
prospects for beneficial mutations arising within junk DNA is very problematic,
because like a letter within a text, no nucleotide is good or bad in itself, but only
in the context of many other nucleotides. Within the context of a non-functional
array of letters, it is not reasonable to expect a spelling error to ever create useful
information. Single letters outside of a functional context cannot take on a function
of their own. In the same way, within any DNA sequence that is truly neutral
“junk”, there is no frame of reference for defining a point substitution as being
either beneficial or deleterious in terms of useful information. There is no
functional context within which beneficial mutations could arise — with one
major exception. Ironically, there is one type of beneficial mutation that should
arise systematically within junk DNA — deletions. Essentially all deletions within
junk DNA should be beneficial, due to improved metabolic efficiency. The larger
the deletion — the more the benefit, and so the stronger the selective advantage.
So to the extent that selection is actually operational, all junk DNA should be
systematically deleted. This should happen long before enough beneficial muta-
tions might accumulate within the junk DNA to give it a new and meaningful
biological function.
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4. Conclusions

Our analysis confirms mathematically what would seem intuitively obvious —
multiple overlapping codes within the genome must radically change our expecta-
tions regarding the rate of beneficial mutations. As the number of overlapping
codes increases, the rate of potential beneficial mutation decreases exponentially,
quickly approaching zero. Therefore the new evidence for ubiquitous overlapping
codes in higher genomes strongly indicates that beneficial mutations should be
extremely rare. This evidence combined with increasing evidence that biological
systems are highly optimized, and evidence that only relatively high-impact ben-
eficial mutations can be effectively amplified by natural selection, lead us to con-
clude that mutations which are both selectable and unambiguously beneficial must
be vanishingly rare. This conclusion raises serious questions. How might such
vanishingly rare beneficial mutations ever be sufficient for genome building? How
might genetic degeneration ever be averted, given the continuous accumulation of
low impact deleterious mutations?

Addendum: We append the following reference which appeared following the
finalization of this chapter, which shows evidence that mammalian genes have
extensive overlapping functions (“Locating protein-coding sequences under selec-
tion for additional, overlapping functions in 29 mammalian genomes.” Lin MF,
Kheradpour P. Washietl S, Parker BJ, Pedersen JS, Kellis M. Genome Res. 2011
Nov;21(11):1916-28. Epub 2011 Oct 12). We also append another significant
paper (“The genetic code is nearly optimal for allowing additional information
within protein-coding sequences”, Itzkovitz S., Alon U., Genome Res. 2007 Apr;
17(4):405-12. Epub 2007 Feb 9).
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