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Abstract

Computational evolution experiments using the population genetics simulation Mendel’s Accountant
have suggested that deleterious mutation accumulation may pose a threat to the long-term survival
of many biological species. By contrast, experiments using the program Avida have suggested that
purifying selection is extremely effective and that novel genetic information can arise via selection
for high-impact beneficial mutations. The present study shows that these approaches yield seemingly
contradictory results only because of disparate parameter settings. Both agree when similar settings
are used, and both reveal a net loss of genetic information under biologically relevant conditions.
Further, both approaches establish the existence of three potentially prohibitive barriers to the evolu-
tion of novel genetic information: (1) the selection threshold and resulting genetic decay; (2) the
waiting time to beneficial mutation; and (3) the pressure of reductive evolution, i.e., the selective
pressure to shrink the genome and disable unused functions. The adequacy of mutation and natural
selection for producing and sustaining novel genetic information cannot be properly assessed with-
out a careful study of these issues.
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Introduction

Mathematical models and numerical simulation have long suggested that the accu-
mulation of slightly deleterious mutations may pose a threat to the long-term
survival of many biological species, including humans [1-4]. Computational evo-
lution experiments with the forward-time population genetics simulation Mendel’s
Accountant have predicted a substantial fitness decline in the human species under
biologically relevant conditions [5]. Moreover, experiments with biological
organisms have raised similar concerns, revealing that the majority of adaptive
mutations cause a loss of functionality [6—10]. Lethal mutagenesis may also play
a key role in pathogen attenuation [11-13]. Recently, however, experiments using
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the digital genetics software Avida have suggested that purifying selection can be
extremely effective and that novel genetic information can arise via selection for
high-impact beneficial mutations [14]. Avida researchers have claimed a high
degree of biological relevance for the program, using it to address numerous
biological questions [15,16].

In this study, we investigate why Avida and Mendel’s Accountant yield seem-
ingly contradictory results. We find that most discrepancies are due to differences
in default settings. Mendel’s default settings implement values plausible for
modeling the human species, while Avida’s default settings have virtually no
parallel in biological systems. Additionally, Avida introduces several un-biological
mechanisms both for facilitating the development of novel genetic information
and for preventing its loss. The most notable deviations from biological reality
include the distribution of mutational fitness effects, the waiting time to high-
impact beneficial mutation, and the selective neutrality of inert genomic material.
When used with more realistic settings, Avida’s results agree with other studies
that reveal a net loss of genetic information under biologically realistic conditions.
The results reported here suggest that three substantial barriers may prevent the
evolution of genetic information by mutation and natural selection in biological
organisms: (1) the selection threshold; (2) the waiting time to beneficial mutation;
and (3) reductive evolution. Implications for theory and medicine are discussed.

Mendel’s Accountant

Detailed descriptions of Mendel’s Accountant (hereafter Mendel) are available
elsewhere [17,18], and default settings are described in the Methods. Briefly,
Mendel constitutes a numerical simulation that tracks mutations as they arise
within the members of a model population. The user specifies parameters such as
population size, genome size, mutation rate, and the proportion of beneficial muta-
tions. Mutational fitness effects are represented by a Weibull distribution, with
both deleterious and beneficial effects having lower and upper bounds. The largest
deleterious fitness effect is —1.0 (lethal in most contexts), while the smallest effect
is defined as the reciprocal of the functional genome size (-1/G,), following the
precedent of Kondrashov [2]. Beneficial mutations are limited by the same lower
bound (1/G,) and a user-defined upper bound (0.001 by default). Each mutation
has its own fitness effect as well as its own location within an individual’s genome,
allowing the investigator to model linkage and recombination. To save computa-
tional resources, neutral mutations are not normally tracked. Instead, the mutation
rate is scaled to exclude neutral mutations, such that the mutation rate defined by
the user is the rate per effective genome, i.e., the rate of mutations affecting fitness.
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The program periodically reports various statistics during an experiment, includ-
ing the population’s average fitness and the average number of deleterious and
beneficial mutations per organism. The program is open source and is available
online [19].

Avida

Avida differs from Mendel in that it represents genomes directly using machine
code instructions, and generally requires more computer science knowledge for
use and interpretation of results. Twenty-six genomic instructions are defined in
the software, and each performs a specific computational task (e.g., adding two
numbers). Individual genomes, called digital organisms, consist of about 100
instructions and undergo random mutation at a user-defined rate. Mutations may
substitute, insert, or delete instructions at random. The Avidian organisms are
themselves housed on a two dimensional grid. Replication is asexual, with
daughter cells randomly replacing one of the eight surrounding neighbors.
Because of this, replication rate determines fitness in Avida; any changes that
allow an organism to copy its genome and replicate faster will allow it to replace
other organisms, and its frequency in the population will increase.

Each organism in Avida has an associated merit value that determines its
relative replication rate. This value reflects both genome size and the ability to
perform one of nine computational functions (logic operations). Making merit
proportional to genome size implements a scheme called size neutrality in which
larger genomes are artificially given extra computational time. This removes the
selective pressure to shrink genomes, making organisms with identical phenotypes
but different genome sizes equivalent in fitness. Because of this, acquiring merit
bonuses by performing any of the nine logic operations is the primary means by
which organisms increase their replication rate in Avida. These functions arise
when random mutations produce particular combinations of instructions that
cause the functions to be executed. For example, the simplest logic operations,
NAND and NOT, can occur when the instruction NAND arises in the correct com-
bination with input-output and labeling instructions.

Considering its frequent application to biological questions, Avida’s default
range of beneficial mutational fitness effects is curiously high. The two simplest
operations have a multiplicative merit bonus of 2, doubling an organism’s fitness.
Bonuses increase exponentially with the complexity of a function, and EQU (the
most complex function in Avida) multiplies fitness by 32 (Table 1). For purposes
of biological comparison, relative fitness may be defined as w = 1 + s, where s is
the mutational fitness effect and w is the relative fitness of an organism expressing
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Table 1. Default fitness bonuses for performing nine logic operations in Avida. Adapted from
Lenski et al. [14].

Number of NAND Default Multiplicative Default Fitness

Logic Operation Computation Operations Needed (z) Bonus (2") Effect (w — 1)
NOT ~A; ~B 1 2 1.0
NAND ~(A and B) 1 2 1.0
AND A and B 2 4 3.0
ORNOT (A or ~B); 2 4 3.0
(~A or B)
OR AorB 3 7.0
ANDNOT (A and ~B); 3 8 7.0
(~A and B)
NOR ~A and ~B 4 16 15.0
XOR (A and ~B) or 4 16 15.0
(~A and B)
EQU (XNOR) (A and B) or
(~A and ~B) 5 32 31.0

a particular function as compared to its function-free ancestor. Mutational fitness
effects therefore range from 1.0 to 31.0 under Avida’s default settings. The
program is available online [20], and more detailed descriptions of the software
are available elsewhere [21-23].

A previous study [24] has demonstrated that seven of the nine logic operations
arise by mutation alone in Avida, without selection, reflecting their informational
simplicity within the software environment. Under default settings lasting about
10,000 generations, an average of 8.6 (+ 0.7) such functions successfully evolve
(i.e., rise above a frequency of 50%), increasing fitness by an average of
20,000,000 fold. Increases of this magnitude are enabled by the large multiplica-
tive fitness bonuses assigned to the logic operations (22 x 4% x 82 x 16? x 32 =
33,554,432; Table 1). Fitness increases observed in biological evolution experi-
ments are negligible by comparison; e.g., in experiments with E. coli, fitness
increased by only 75% after 20,000 generations [6]. Interestingly, the Avidian
logic functions are prevented from reaching fixation by the relatively high
mutation rate (approximately 0.85 mutations per genome per generation). Fitness
eventually levels off, as only nine functions are available.

Although Avida’s default mutational fitness effects range from 1.0 to 31.0,
the user may specify other values. Using alternative values ranging from 0 to
1.0, Nelson and Sanford [24] used an empirical approach to demonstrate that
Avidian populations experience a selection threshold, or a critical fitness effect
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below which drift dominates the behavior of a mutation. About half of the
functions evolve (rise above a frequency of 50%) with fitness effects of approxi-
mately 0.2, the empirically determined threshold value. With fitness effects of
<0.075, no new functions evolve, and those that have previously evolved break
down.

Selection threshold and genetic entropy

Muller [25] was one of the first to allude to a selection threshold, writing in 1964
that “There comes a level of advantage... that is too small to be effectively seized
upon by selection.” Population size is the most studied factor affecting the selec-
tion threshold [26], and its role is expressed in Kimura’s [27] inequality, |s| <1/
(2N,). This states that a mutation’s fate will be dominated by random genetic drift
if the absolute value of its fitness effect (s) is less than the reciprocal of twice the
effective population size (N,). However, many other factors influence the efficacy
of selection, including developmental canalization and environmental effects. Any
factor that influences reproduction in a way that is independent of the genotype
will raise the threshold, causing more mutations to behave as if they are neutral.
The point is well summarized by Eyre-Walker and Keightley:

... it seems unlikely that any mutation is truly neutral in the sense that it has no
effect on fitness. All mutations must have some effect, even if that effect is
vanishingly small. However, there is a class of mutations that we can term effec-
tively neutral... As such, the definition of neutrality is operational rather than
functional; it depends on whether natural selection is effective on the mutation in
the population or the genomic context in which it segregates, not solely on the
effect of the mutation on fitness [28].

Nei [29] has pointed out that natural selection operates as the result of the
production of different genotypes in a population, and is therefore not the fun-
damental cause of evolution. Selection can only alter the survival of variation
that has already arisen in nature. As a result, net fitness can decrease even when
natural selection is successful. ReMine [30] makes this point clear by using the
analogy of soldiers marching uphill on a descending conveyor belt. The conveyor
belt represents the load of deleterious mutations that consistently decreases
fitness. The soldiers near the bottom are less fit, and tend to be eliminated as they
fall off the lower edge (representing natural selection). Those that survive may
replicate at a certain rate, and take a step upward each time a beneficial mutation
occurs. This interplay is known as the mutation-selection balance [31]. If the
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rate of beneficial mutations (rare steps upward) is insufficient to counteract the
load of deleterious mutations (common steps downward), natural selection may
work very effectively but concurrently be unable to prevent net information loss
and eventual extinction. In such a situation, the entire population eventually
slides off the conveyor belt, experiencing error catastrophe or mutational
meltdown.

It is obvious that the potential lethality of deleterious mutational load is magni-
fied when selection is less effective. Because the majority of mutations are delete-
rious [28], random genetic drift imposes a high degree of directionality on
evolution by favoring the fixation of mutations that decrease fitness [32]. These
issues have caused concern about the long-term survival of numerous species,
including humans [4], inspiring titles like “Contamination of the genome by very
slightly deleterious mutations: why have we not died 100 times over?” [2]. No
compelling solutions to this paradox have yet emerged, though many possibilities
have been proposed [2,3] (see Discussion).

These considerations lead to the realization that, especially in species with large
genomes, it is possible that mutation rates are so high and deleterious mutations
so common that genetic information cannot be maintained. Sanford [33] has intro-
duced the term genetic entropy to describe the deterministic deterioration of
genetic information resulting from ineffective purifying selection. The aforemen-
tioned experiments with Avida have demonstrated genetic entropy, providing
empirical evidence that selection thresholds exist, and showing that ineffective
selection may pose a substantial barrier to the evolutionary origin and maintenance
of complexity [24]. Experiments using Mendel have provided further evidence of
a selection threshold, and have explored the evolutionary fate of both beneficial
and deleterious mutations [5,34-36].

The present study explores potential barriers to the progressive evolution of
novel genetic information by pursuing several lines of experimentation with
Mendel and Avida. First, Mendel is used to replicate results obtained under
Avida’s default settings. This demonstrates Mendel’s versatility and reveals the
parameters that are necessary to obtain results typical of an Avida experiment.
Two additional sets of Mendel experiments are performed, one using default set-
tings, and another using settings more conducive to the occurrence of high-impact
beneficial mutations. Next, Avida is used to pursue two additional questions.
First, functional precursors of the EQU operation are assigned neutral fitness
effects in order to explore the evolutionary origin of complexity when beneficial
mutations are not readily available. Second, various mechanisms preventing
reductive evolution (adaptive loss of genetic material and functionality) are disa-
bled and the evolutionary consequences observed.



Biological Information Downloaded from www.worldscientific.com

by 2600:1009:a021:18ab:f992:ef 7a:650b:elad on 12/08/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

344 C. W. Nelson and J. C. Sanford
Methods
Experiments using Mendel’s Accountant

All Mendel experiments used version 1.8.5. Random number seeds were chosen
as integer values from 1 to 1,000. Experiments were performed using settings that:
(1) approximate Avida’s default settings, (2) employ Mendel’s default settings,
and (3) use Mendel settings more conducive to the occurrence of high-impact
beneficial mutations. A full list of experimental settings appears in Table 2.

First, ten Mendel experiments were performed to approximate Avida’s default
results. The most notable changes to Mendel’s default settings were a reduced
genomic mutation rate of 0.01 (reflecting the size and selective neutrality of much
of the ancestral Avidian genome), a proportion of 0.000023 mutations being ben-
eficial, and uniform multiplicative beneficial fitness effects of 5.5. (Mendel does
not lend itself to studying the large discrete fitness effects implemented in Avida,
so uniform fitness effects were used.)

Next, ten experiments were performed under Mendel’s default settings.
Following this, twenty experiments were performed under settings more conducive
to the occurrence and selection of high-impact beneficial mutations. The fraction
of beneficial mutations was increased to 0.001, the maximum beneficial fitness
effect increased to 0.5, heritability increased to 0.5, and experiment length
increased to 1,000 generations.

Experiments using Avida

All Avida experiments used version 2.8.1. Random number seeds were chosen ran-
domly as an integer value from 1 to 1,000,000,000. Two sets of experiments were
performed, one in which various precursor functions were assigned neutral fitness
bonuses, and one in which mechanisms preventing genome shrinkage were disabled.

For experiments in which functions were assigned neutral fitness bonuses, the
number of neutral functions varied from zero to nine, with zero corresponding to
Avida’s default settings and nine corresponding to all functions (including EQU)
having no fitness effect. Two sets of 20 replicates were performed, one in which
functions were made neutral from simple-to-complex (beginning with NOT), and
one in which functions were made neutral from complex-to-simple (beginning with
XOR). Each replicate therefore consisted of 10 experiments, one for each combina-
tion of neutral functions. In all instances, EQU was the last function made neutral
(all nine neutral functions). Default fitness bonuses were maintained for advanta-
geous functions, and functions were made neutral by defining multiplicative
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Table 2. Parameter settings used in experiments with Mendel’s Accountant. A dash (—) indicates

the use of default values.

Avida Altered
Parameter Mendel Default Approximation Mutation
Category Parameter Values (Expt 1) Values (Expt 2) Values (Expt 3)
Basic New mutations per offspring 10 0.01 -
Fraction of mutations 1.0 x 107 23x107° 1.0x 107
beneficial
Offspring per female 6 4 -
Population size (per tribe) 1000 3600 -
Generations 500 10000 1000
Mutation Functional genome size 3.0 x 10° 100 -
Fraction of mutations 0.001 Not applicable -
having a large effect
Minimum deleterious 0.1 Not applicable -
mutation effect
considered large
Maximum beneficial effect 0.001 Not applicable 0.5
per mutation
Number of initial 0 - -
beneficial loci
Fraction recessive 0 - -
Combine mutations in No Yes -
multiplicative manner
Fraction multiplicative effect Not applicable 1 -
Consider all mutations equal No Yes -
Equal effect for each Not applicable 0.001 -
deleterious mutation
Equal effect for each Not applicable 5.5 -
beneficial mutation
Synergistic epistasis No - -
Allow back mutations No - -
Selection Random death 0 0.1 -
Heritability 0.2 1 0.5
Non-scaling noise 0 -
Fertility declining with Yes No -
fitness
Selection scheme Unrestricted - -
probability
selection

(Continued)
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Table 2. (Continued)

Population Clonal reproduction No Yes -
Haploid No Yes -
Fraction self fertilization 0
Initial heterozygous alleles No
Dynamic linkage Yes - -
Number of chromosome 23 -
pairs
Number of linkage subunits 989 - -
Dynamic population size No
Population substructure No
Bottleneck No - -
Computation Tracking threshold 1.0 x 107
Parallel processing No - -
Queuing system PBS - -
Simulation engine Fortran

bonuses of 1.0 (fitness effect of 0) in the environment.cfg file (type=mult,
value=1.0).

To examine the role of genome shrinkage in evolution, two sets of 30 replicates
were performed, one each for genome sizes of 50 and 100. The default genome
contained in default-classic.org was used for size 100, and genomes of size 50
were constructed by removing 50 of the unnecessary NOP-C instructions from the
default genome. For each replicate, three alternative scenarios were compared:
(1) size neutrality on (default; SNON); (2) size neutrality off (SNOFF); and (3) size
neutrality off with mutations to the H-COPY instruction disabled (SNOFF NHC).
To disable size neutrality, the avida.cfg file was altered to make base merit constant
(BASE_MERIT_METHOD 0). To disable mutations to H-COPY, the instset-clas-
sic.cfg file was altered (h-copy 0). Mutations substituting the H-COPY instruction
into the Avidian replication loop allow a doubling of the replication rate, and it was
found that this process can circumvent the pressure to reduce genome size.

Results
Experiments using Mendel’s Accountant

Under Mendel’s default settings (Table 2), end-of-experiment fitness declined to
an average of 0.76 (+ 0.01) after 500 generations. Populations contained an
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average of 4,906.1 (£ 34.3) deleterious mutations and 0.03 (+ 0.04) beneficial
mutations per genome. Figure 1(A) displays the fitness trajectory of a case study
population under these conditions.

Under settings designed to approximate results obtained under Avida’s default
settings lasting 10,000 generations, fitness increased to an average of 35,730,000
(ranging up to 126,900,000) relative to the ancestral population. These results
matched Avida very well, which produces an average fitness increase of approxi-
mately 19,749,130. Populations contained an average of 62.7 (+ 5.2) deleterious
mutations and 8.8 (= 0.9) beneficial mutations per genome. Figure 1(B) displays
the fitness trajectory of a case study population under these conditions.

To explore evolution under conditions similar to the default settings but more
favorable to beneficial mutation, the proportion of beneficial mutations was
increased to 0.001, with a maximum effect of 0.5, heritability was increased to 0.5,
and experiment length was increased to 1,000 generations. Under these condi-
tions, end-of-experiment fitness decreased to an average of 0.8 (x 0.1), with an
average of 9,739.3 (x 50.2) deleterious mutations and 14.8 (+ 3.2) beneficial muta-
tions per genome. Although no end-of-experiment fitnesses were above the ances-
tral fitness of 1.0, fitness did rise above 1.0 during the course of three (15%) of
these experiments, with a maximum of 1.01. One of these cases is shown in Figure
1(C). Here, a high-impact beneficial mutation (fitness effect of approximately 0.2)
occurred around generation 270 and rapidly moved to fixation. No other mutations
(beneficial or deleterious) reached fixation over the 1,000 generations of this
experiment. End-of-experiment fitness was 0.85.

Experiments using Avida

Experiments were conducted to determine how many functional precursors must
be rewarded to enable the evolution of EQU in Avida. Results are summarized in
Figure 2. EQU never evolved when seven or more precursor functions were
neutral. It also never evolved with six neutral precursors under the complex-to-
simple scenario, and evolved only once with six neutral functions under the sim-
ple-to-complex scenario. These findings expand the results of other studies, in
which EQU never evolved when all simpler functions were neutral [14] and
certain combinations of neutral functions involving NOR and XOR were found to
hinder the evolution of EQU [37]. The evolution of XOR and EQU therefore
requires selection for functional precursors, and at least two precursors must be
rewarded for EQU to evolve. EQU is more likely to evolve when relatively
complex operations are rewarded, because complex operations are less likely to
arise without a selective advantage. Hitchhiking of neutral functions to high
frequencies (> 50%) was common in these experiments.
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Fig. 1. Fitness trajectories of case study populations in Mendel’s Accountant. Note that the axes
differ. (A) Under Mendel’s default conditions, fitness decayed to an end-of-experiment value of
0.76 as a result of the accumulation of approximately 4,897.2 deleterious mutations per individual.
(B) Under conditions approximating Avida’s default settings, fitness leaped in stages to an end-of-
experiment value of 3,014,000 as a result of the spread of eight beneficial mutations with fitness
effects of 5.5. Roughly 55.8 deleterious mutations were present per individual. Note that the y-axis
is log base 10. (C) Under altered Mendel settings, fitness declined sharply, then leaped to
1.01 following the introduction of a high-impact beneficial mutation (fitness effect of approxi-
mately 0.2) around generation 270. This offset the adverse effects of approximately 2,643.4
deleterious mutations that had accumulated in the individual in which it occurred. End-of-
experiment fitness was 0.85.
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Fig. 2. The effects of selectively neutral precursors on the evolution of EQU. EQU never evolved
when seven or more functions were assigned neutral fitness bonuses.

Avida experiments were also performed to examine the evolutionary conse-
quences of selection acting on genome size (results not shown). Fewer functions
evolved when size neutrality mechanisms were disabled, and this difference was
more pronounced for organisms with smaller genomes. EQU evolved less often,
and end-of-experiment fitnesses were lower for both genome sizes of 50 and 100.
Though genome size tended to increase somewhat under default settings, this
pattern was reversed when size neutrality was not enforced. Therefore, size
neutrality artificially facilitates the evolution of complexity in Avida, presumably
by maintaining inert genomic code that can be used as raw material for evolutionary
innovation.

Discussion
Selection threshold and genetic entropy

A previous study [24] demonstrated that a fitness effect selection threshold exists
in Avida. The selection threshold is defined as the mutational fitness effect at
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which natural selection and random genetic drift contribute equally to the fate of
a mutation in the population. Practically, this is the fitness effect for which positive
selection successfully captures half of the beneficial mutations that arise. In Avida,
this occurs at a beneficial fitness effect of approximately 0.2 (of course, this is a
lower estimate of the threshold value, as multiple mutations produce the same
logic operations in each run). Moreover, zero new functions evolve when fitness
effects are < 0.075, and those that have previously evolved break down. Likewise,
experiments with Mendel have estimated a selection threshold of approximately
10 to 107 under conditions typical of mammalian populations [5,34].

The selection threshold can act as a barrier preventing the evolutionary origin
and maintenance of novel adaptive genetic information. Unless selection is able to
“see” the fitness effects of mutations, they will drift in the population as if neutral.
Because the majority of mutations are deleterious, the suspension of selection for
low-impact mutations strongly favors the fixation of mutations that decrease
fitness [32]. The net result is a phenomenon that Sanford [33] has termed genetic
entropy. When this occurs, purifying selection is unable to counteract the accumu-
lation of low-impact deleterious mutations. Even when rare beneficial mutations
cause a selective sweep, they are linked to numerous deleterious mutations across
many loci, such that the total number of functional loci decreases. Experiments
with Mendel have confirmed that deleterious mutations accumulate in a linear
fashion despite selection [5], consistent with biological studies (e.g., with E. coli
[38]). It is worth emphasizing that the gradual fitness declines shown in Figures
1(A) and 1(C) occur despite the concurrent action of reasonably strong selection;
in these cases, selection is simply unable to counteract the net adverse effects of
new mutations.

Genetic entropy is not merely a theoretical concern. Numerous analyses have
confirmed that the accumulation of slightly deleterious mutations can cause
gradual fitness loss leading to extinction in asexual species [12,25,39-42], and
similar processes are relevant to sexual species [1,43], including humans [2—4,
44-47]. Lethal mutagenesis of pathogens, due to elevated mutation rates and
periodic bottlenecking upon infection, may also be applicable in novel medical
approaches [11-13]. Novel means of genetic intervention to reduce mutation rates
may be necessary to prevent the extinction of numerous species, though it is
unclear whether this would be feasible.

High-impact beneficial mutations

The Mendel case study displayed in Figure 1(C) is an informative example of the
effects of high-impact beneficial mutations. A single high-impact beneficial
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mutation (fitness effect of approximately 0.2) occurred around generation 270,
offsetting the effects of approximately 2,643 deleterious mutations in the indi-
vidual in which it arose. Beneficial mutations with large effects have certainly
occurred in nature. For example, in the presence of an antibiotic, the fitness effect
of any mutation conferring drug resistance is so large as to be mathematically
undefined, as the ancestral fitness is rendered zero in that environment. Other
examples of high-impact beneficial mutations have been reported in viruses in the
presence of heat [48]. However, even though these mutations are beneficial in their
respective environments, they work by damaging or eliminating genetic informa-
tion [8], not producing it (see below).

This phenomenon highlights one disadvantage of Mendel’s Accountant,
namely, that it treats evolution merely as an accounting problem, in keeping with
traditional population genetics. Evolution is seen as an exercise in fitness addition
and subtraction, without any reference to the underlying genomic mechanisms or
architecture. This favors progressive evolution, as it allows single beneficial
mutations of large effect to compensate for large numbers of deleterious mutations.
This phenomenon is made possible by the infinite allele model, and is precisely
the process that Kimura invoked to explain the problem of very slightly deleterious
mutation accumulation [27]. However, even though this model is clearly more
conducive to progressive evolution, there are several reasons why it is not biologi-
cally realistic. Scenarios in which large numbers of deleterious mutations are
regularly offset by relatively few high-impact beneficial mutations lead inevitably
to shrinkage of the functional genome. If such beneficial mutations are the sole
source of progressive evolution, the functional genome must shrink each time
evolution takes a step forward (i.e., each selective sweep). This type of change is
not sustainable and cannot constitute the sole source of progressive evolution. (For
this reason, deleterious and beneficial mutations have heretofore been studied
separately with Mendel, with high-impact beneficial mutations being studied as a
special case [34].) Instead, plausible scenarios of progressive adaptive evolution
must allow the deterministic elimination of most deleterious mutations through
purifying selection. Additionally, the gradual accumulation of beneficial muta-
tions through natural selection must have the potential to build every complex
biological feature requiring explanation. This process requires qualities of linkage
and functional integration that cannot be adequately represented with numerical
simulation.

Distribution of mutational fitness effects

The mutational fitness effects implemented under Avida’s default settings
(1.0 — 31.0) are extremely rare or nonexistent in the biological realm (but see Bull
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et al. [48] on high-impact mutations in viruses). This renders published Avida
results irrelevant to the great majority of biological mutations. Some readers may
object that, while Avida’s fitness effects are too large, those implemented in
Mendel are too small. On the contrary, it is well established that (1) most muta-
tions are deleterious, and (2) most mutations have very slight effects [28]. For
example, a recent study of nonessential ribosomal genes in Salmonella typhimu-
rium [49] examined a total of 126 single bp substitutions, revealing that 120 were
weakly deleterious and 6 were neutral or nearly-neutral. Average deleterious
selection coefficients were 0.0096 and 0.0131 for synonymous and nonsynony-
mous mutations, respectively. No significantly advantageous mutations were
found, and no mutations caused a complete loss of function. In humans, most
nonsynonymous mutations in protein coding regions have effects in the range of
107 to 107" [28]. Moreover, mutations in functional regions of the genome that are
nonprotein-coding are likely to have even smaller effects. Viruses are somewhat
exceptional for their high mutational sensitivity. Approximately 20 to 41% of viral
mutations are lethal, while viable mutations have an average deleterious fitness
effect of 0.10 to 0.13, and many mutations appear neutral [50,51]. However, viable
mutations of small effect in viruses are still more abundant than those of large
effect, and, as Lind et al. [49] have noted, it is possible that such experiments
report large numbers of neutral mutations because of assays that lack sufficient
sensitivity to detect low-impact mutations.

Junk DNA

A final concern is the existence of inert or “junk” DNA, i.e., genomic material
for which mutation does not affect functionality. It does seem possible that many
genomic sites play functional roles that are (at least partially) independent of
sequence. Avida accounts for this by specifying no-operation instructions for
85% of the ancestral genome. Mendel also corrects for this possibility in two
ways. First, Mendel models only the effective (functional) genome size, G,, with
10% as the default. Second, to account for truly neutral mutations (s = 0), only
the genomic rate of mutations affecting fitness, not the total rate, is used in
default settings. Neutral mutations are thus excluded from the mutation rate.
Mendel therefore uses a human mutation rate of 10 per genome per generation,
rather than the actual mutation rate of approximately 50 — 100 [2,4,52-54], and
a genome size of 3.0 x 10® (rather than 3.0 x 10%). This genome size limits the
magnitude of fitness effects to 1 /(3.0 x 10%) = 3.33 x 10~ and larger, allowing
selection to act more effectively on mutations affecting fitness. These steps serve
to account for neutral mutations and inert genomic material, to minimize the
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required computational resources, and to focus the use of Mendel on the effective
(functional) genome (though the ability to track neutral mutations is currently
being implemented).

The above considerations grant the common assumption that approximately
90% of the genome is indeed “junk.” However, this has been subject to challenge
for some time [55]. Importantly, the term “junk DNA” was first introduced by
Ohno not as a result of experimentation, but rather as a theoretical necessity to
avoid the evolutionary barrier of genetic entropy:

... there seems to be a strict upper limit for the number of gene loci which we can
afford to keep in our genome. Consequently, only a fraction of our DNA appears
to function as genes. ... the moment we acquire 10° gene loci, the overall deleteri-
ous mutation rate per generation becomes 1.0 which appears to represent an
unbearably heavy genetic load. ... Even if allowance is made for the existence in
multiplicates of certain genes, it is still concluded that, at the most, only 6% of
our DNA base sequences is utilized as genes. ... More than 90% degeneracy
contained within our genome should be kept in mind when we consider evolu-
tional changes in genome sizes. ... it is not likely that these sequences came into
being as a result of positive selection. Our view is that they are the remains of
nature’s experiments which failed [56].

This reasoning is common. For example, upon reporting a human mutation rate of
64 mutations per generation, Drake et al. [52] note that:

It is hard to image [sic] that so many new deleterious mutations each generation
is compatible with life, even with an efficient mechanism for mutation removal.
Thus, the great majority of mutations in the noncoding DNA must be neutral.

Following the introduction of the junk DNA concept, many biologists quickly
adopted the selfish DNA mechanism [57-59] to explain repetitive DNA [60],
suggesting that “The search for other explanations may prove, if not intellectually
sterile, ultimately futile” [58]. Others resisted this line of reasoning and suggested
that repetitive DNA may function in gene regulation [61,62].

A full discussion of the functionality of nonprotein-coding DNA is beyond the
scope of this study. However, it is worth noting that junk DNA assumptions have
proven to be largely incorrect, while hypotheses suggesting functionality are being
increasingly vindicated. Mattick has remarked that the junk DNA dogma may “be
a classic story of orthodoxy derailing objective analysis of the facts, in this case
for a quarter of a century... [it] may well go down as one of the biggest mistakes
in the history of molecular biology” (quoted in reference [63]). A wide range of
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evidence now exists which suggests that nonprotein-coding DNA is indeed
functional. Nonprotein-coding DNA is often strongly conserved, and over 90% of
the human genome is transcribed [28,64,65]. This pervasive transcription includes
repetitive elements, which are generally expressed in a tissue-specific manner and
perform regulatory roles [66]. Studies that dismiss these results [67] exclude
nonprotein-coding RNAs as simply “transcriptional noise.” However, it is increas-
ingly clear that such RNAs constitute the majority of the transcriptome and arise
abundantly from intergenic regions [68]. Moreover, it has been shown that even
mutations at ‘“silent” (synonymous) sites in protein-coding regions can affect
fitness and lead to disease [69,70]. Other evidence presented in this volume, such
as that for genome-wide sequence patterns [71] and overlapping genomic codes
[72], suggests functionality for a large fraction of the genome. If a large portion of
nonprotein-coding DNA is indeed functional and sequence specificity is necessary
for that functionality, then a very large class of mutations must exist in eukaryotes
with very slight effects, smaller than the 10~ — 10! range. These findings revive
the concerns of Ohno [56] that humans may experience an “unbearably heavy
genetic load” (i.e., genetic entropy), and suggest that human fitness may decline
substantially in coming generations [4,45].

Several other mechanisms have been proposed to solve the paradox of how
genomes could have survived extinction by genetic entropy [2,3]. These include
recombination, back mutation, mutation rate heterogeneity, and synergistic
epistasis between deleterious mutations. Such explanations are unlikely. Though
theoretically possible, the perpetual back mutation or chance recombination of
deleterious mutations into a single genotype represent sequences of events too rare
to be plausible. As such, these mechanisms constitute appeals to rare chance
events, not in keeping with the law-like operation of natural selection. For
example, though uniform fitness effects and high heritability allow selection for
mutation count under certain conditions [42], this effect disappears if there is a
spectrum of fitness effects, and synergistic epistasis makes genomic decay more
severe [35]. One other possibility is that the mutation rate has become elevated in
the recent past, though this has not been studied in detail. Further work will be
necessary before firm conclusions can be made about these issues and the severity
of an impending fitness decline in the human species.

Irreducible complexity and the waiting time to beneficial mutation

All nine logic operations in Avida require the coordination of multiple instructions.
Yet it has been shown that seven of these operations (NOT, NAND, AND, ORNOT,
OR, ANDNOT, and NOR) arise even without a selective advantage [24], indicating
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that they are relatively simple in the Avida environment. By contrast, XOR and
EQU require selection for functional precursors. At least two precursors must be
rewarded for EQU to evolve. EQU is more likely to evolve when more complex
operations are rewarded, because complex operations occur at lower frequencies
without a selective advantage. These results are relevant to a central issue in the
study of progressive evolution, namely, the waiting time to beneficial mutation.
This parameter determines the speed at which adaptation based on novel genetic
information can progress. Indeed, billions of mutations have occurred in long-term
evolution experiments with E. coli, greatly exceeding the number of possible point
mutations in its genome of ~4.6 million bp, suggesting that all beneficial one-step
mutations have likely been tested [73]. Many adaptive steps therefore seem to
require multiple changes, yet the waiting time increases exponentially with each
additional genomic site required to change [74]. If the waiting time becomes too
great, a particular adaptive step can prevent an adaptive scenario. The Avida results
reported here demonstrate that this evolutionary barrier can indeed be prohibitive.

Whether adaptive steps are generally difficult to achieve (i.e., whether they
involve multiple genomic sites) is an empirical question that must be addressed by
biological studies. On one hand, it has become clear from protein studies that the
proportion of amino acid sequences that can be translated into functional proteins
is very small. For proteins about 100 amino acids long, there are 20'® = 10'*
possible sequences, yet only about 1 in 107 [75] to 1 in 10% [76] are capable of
forming functional structures, and most enzymes in an organism such as E. coli
are over 300 amino acids long [77]. By comparison, it has been estimated that only
10" to 10" quantum particle interactions can have occurred in the entire universe
since the Big Bang [78,79], and the probabilistic resources relevant to chemical
reactions on Earth allow only about 107 events [80]. As only a minute fraction of
these events were amino acid interactions exploring protein space, it is clear that
Earth has insufficient probabilistic resources for generating even one functional
protein sequence by chance [77].

However, evolution need only wait for single adaptive steps, not entire proteins.
Nevertheless, adaptive steps may require mutations at multiple genomic positions.
The results reported in this study show that, given the probabilistic resources
available in roughly 10,000 generations of an Avida experiment (testing an aver-
age of 10.8 billion instructions [37]), the waiting time to beneficial mutation is
prohibitive to the evolution of the EQU function when intermediate states are
neutral. This is in agreement with results reported elsewhere [14,37]. Turning to
biological organisms, we may ask if there are any complex features we should
expect not to arise in Earth’s history because too many intermediates are neutral
or maladaptive. Certainly, many complex biological features seem to require
numerous steps (e.g., hundreds of nucleotides).
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Though it has been suggested that, counterintuitively, the waiting time to
beneficial mutation does not increase exponentially with the number of necessary
sites involved [81], the results reported here suggest otherwise. Further, Axe [74]
has provided a detailed mathematical treatment of this evolutionary barrier by
modeling a bacterial population of 10° individuals experiencing 1000 generations
each year for all of Earth’s history. Under these conditions, if intermediate states
are neutral, adaptations involving at most six genomic sites can be expected to
arise over the course of history; if intermediate states are maladaptive, adaptations
involving at most two sites can be expected. (This hypothetical population strongly
favors progressive evolution.) It follows that there is not enough time in Earth’s
history for mutation to generate any adaptive step involving > 6 genomic sites in
any species. Several studies have alluded to these limitations. Orr has noted that
“natural selection is essentially constrained to surveying those [sequences] that
differ from wild-type by single-point mutations... Double mutations are too rare
to be of much evolutionary significance” [82]. Similarly, the eventual stasis
observed in long-term evolution experiments with E. coli has been explained thus:
“Either further major improvements (with fitness increments of more than a few
percent in this environment) do not exist or else they are evolutionarily inaccessible
(e.g., adaptations requiring multiple genetic changes in which the intermediate
states are unfit)” [83].

These concerns are usually discussed in terms of the waiting time to beneficial
mutation, and generate spirited discussion in the literature [74,81,84—88].
However, although such calculations are usually interpreted to support the
Darwinian mechanism of evolution, they are often incompatible with current
theory. For example, Durrett and Schmidt [88] have calculated that the waiting
time for a beneficial step involving only two sites, assuming a neutral intermedi-
ate, is roughly 100 million years in humans—yet humans are thought to have
diverged from chimpanzees within the past 10 million years. Moreover, the chal-
lenge of generating the necessary adaptive mutations is complemented by the
subsequent challenge of their fixation. This issue, classically known as the cost of
substitution, is discussed elsewhere by ReMine [30,89].

The waiting time to beneficial mutation may alternatively be framed in terms of
irreducible complexity [87,90]. The concept of irreducible complexity has had a
great impact on the biological community, with numerous studies attempting to
dismiss its importance. Avida has been used for this purpose [14-16,91]. Ironically,
the program confirms that the problem is a reality by introducing what Dembski
and Marks [92] have called stair step active information in order to evolve the
EQU function, i.e., it provides information about the target (EQU) by rewarding
the necessary building blocks, each of which can be feasibly constructed by muta-
tion alone. This provides an easily scalable fitness landscape, in which successive
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steps are advantageous (Figure 3). Thus the EQU function can be built gradually
from precursors of lower complexity, each of which is easy to generate through
random mutation.

To justify the fitness scheme implemented in Avida, Lenski et al. have noted
merely that this “is precisely what evolutionary theory requires” [14]. However,
evidence suggests that paths to adaptive functions in biological organisms involve
many genomic sites, with many of the intermediate states being maladaptive. For
example, experiments with TEM-1 B-lactamase have shown that, for homologues
of <~66% identity, intermediate protein sequences are typically non-functional
when hybridized by random composite. This is the case even when only a fraction

A

(B)

©)

Fig. 3. Simple two-dimensional adaptive landscapes that become increasingly conducive to
progressive evolution. The initial state is represented by the white ball. Natural selection can only
promote intermediate states that increase fitness (steps “upward”). Shown are landscapes in which:
(A) intermediate states are maladaptive; (B) intermediates states are neutral; and (C) intermediate
states are beneficial.
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of the total protein length is hybridized and sequences exhibit ~90% identity to
wild type proteins [93]. These data suggest that contiguous stretches of co-
optimized residues exist in biological proteins, and many intermediates between
similar proteins may be nonfunctional. Moreover, most readily available adaptive
changes are loss-of-function mutations [6,8,9]. These paths will be preferred by
selection, as longer adaptive paths confer no advantage until distant targets are
reached.

Avida demonstrates that the waiting time to beneficial mutation increases with
the number of neutral intermediates, and that certain features cannot be expected
to evolve unless simpler precursors are highly beneficial. While the problem of
excessive waiting times does not make adaptive evolution formally impossible, it
does render certain evolutionary scenarios implausible. Irreducible complexity
means complexity that is not reducible to parts that have a selective advantage on
their own, such that multiple coordinated changes are required without the help of
selection. In other words, adaptations requiring multiple mutations are simply less
likely, and the waiting time for their occurrence is greater. As Avida shows, this
barrier can be prohibitive to progressive evolution. Unfortunately, computer simu-
lations cannot provide a thorough understanding of the waiting times to adaptive
steps in biology. As more is learned about the distribution of mutational fitness
effects [28,94] and the genetic basis of adaptive change [8], the answers to these
problems will become clearer.

Reductive evolution

Reductive evolution can entail an advantageous reduction in either genomic
material or gene expression [9,95-97]. In both instances, organisms benefit from
eliminating superfluous energy expenditure. The pressure to eliminate excess
genomic material has been termed “compression selection” [97] and has been
demonstrated in several biological systems. For example, in a classic serial
transfer experiment with QP bacteriophage, replication rate increased by a factor
of 15 and genome size decreased by 83%, with biological competency lost by the
fifth transfer [95]. Some reductions in genome size have also been observed in
evolution experiments with E. coli (e.g., reduced by 1.2% [38]). Although
compression selection may not be strong in organisms for which the cost of main-
taining and replicating DNA is a small fraction of the cell’s total energy budget
[26], it is clearly operational in some smaller systems.

More frequently, reductive evolution proceeds via the elimination of unneces-
sary gene expression. Gauger et al. [9] have shown that, because these types of
mutations are relatively common [96], reductive evolutionary paths are usually
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taken even when short progressive paths are available. Long-term evolution
experiments with E. coli have provided numerous examples of this process. One
mutation that reduced glmUS expression by 10% was highly (~5%) beneficial
[98], as was another mutation that reduced spoT expression [96]. Moreover,
Cooper & Lenski [6] have reported that unused catabolic functions decayed as
fitness increased in 12 experimental populations of E. coli, reducing diet breadth.
One mutation, loss of the ability to use D-ribose, occurred in all 12 populations in
the first 2,000 generations as a result of highly advantageous deletion mutations,
increasing fitness by ~1.4% [7].

These studies indicate that the reduction of biological information can be highly
advantageous. Recent reviews [8,10,99] have reported that the majority of studied
adaptations involve the loss of traits and the reduction of genetic information.
Whether a mutation is beneficial may depend critically upon the environment in
which it arises (e.g., whether nutrients are available or antibiotics are present),
meaning that the effect of a mutation on genetic information cannot be inferred
from relative growth rates alone. Reductive changes are often (though not always)
associated with fitness loss in other environments [100]. For example, the ability
to transport (and therefore metabolize) citrate in oxic conditions evolved in one E.
coli population after about 31,000 generations of experimental evolution [73].
However, the mutant is inferior on glucose, likely because it involves the alteration
of a citrate transporter that normally operates only in anoxic conditions. Other
decreases in channel constriction have also conferred advantages [100]. Similarly,
Bull et al. [48] have reported high-impact beneficial mutations in the virus $X174
that increase fitness in an inhibitory, hot environment, but all of which reduce
fitness at normal temperatures.

The Mendel software uses the classic infinite allele model, and so is not condu-
cive to a straightforward study of the evolution of genome size. On the other hand,
Avida is very tractable for this purpose. Importantly, the biological examples of
adaptation discussed above involve reductive evolution, in contrast with adapta-
tion under Avida’s default settings, where novel functions arise and provide
extreme advantages. It is somewhat surprising that Avidian populations achieve in
only 10,000 generations what E. coli populations fail to glimpse in 50,000 genera-
tions. This occurs partly because artificial size neutrality mechanisms were
introduced into the Avida software as a means of preventing the pressure of
reductive evolution:

The advantage gained by shrinking the code is so dramatic, however, that cells
might even choose to shed sections of code that trigger moderate bonuses. Such
a method certainly provides for very efficient optimization while discouraging the
evolution of complex code by magnifying the barrier to neighboring local minima
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in the fitness landscape. ... Another possibility is to distribute CPU time in a
manner proportional to the length of the code. This is the size-neutral scheme also
used in tierra. The resulting fitness landscape is intuitively much smoother;
strings that behave in the same way but differ in length of code are degenerate as
far as their replication rate is concerned and far-lying regions in genotype-space
can be accessed easily. Clearly this mechanism is much more conducive to the
evolution of complexity... Note that enforcing size neutrality is strictly speaking
un-biological, as it is known that self-replicating strings will shed all unnecessary
instructions if given the opportunity. In avida, size neutrality is necessary in order
to jump start the evolution of complexity [21].

Although the results reported here suggest that size neutrality is not strictly neces-
sary for the evolution of complexity in Avida, it certainly improves success.
Therefore Avida confirms that reductive evolution is also a potential barrier to the
evolution of novel genetic information. Moreover, this barrier will be more
prohibitive if new functions confer more realistic fitness bonuses.

The barrier that compression selection poses for progressive evolution is most
extreme for small genomes. These results demonstrate that, when size neutrality
is disabled, larger genomes evolve more logic operations than smaller genomes.
This occurs because large genomes contain more superfluous material that may be
used as raw material for evolutionary tinkering. If highly beneficial adaptations
arise before prohibitive genome shrinkage occurs, the pressure to maintain highly
beneficial functions can prevent further shrinking, which is only slightly adaptive.
The large default rewards implemented in Avida dwarf the advantages gained by
shrinking the genome, so evolved functions are retained once a minimal genome
size is reached. This appears to be another case in which the waiting time to ben-
eficial mutation is an important consideration, as innovations that require too
much time may not arise before the extraneous genomic raw material is removed
by selection.

Conclusions

This study used the evolutionary simulations Avida and Mendel’s Accountant to
examine three barriers to the production of genetic information by the neo-
Darwinian mechanism of mutation and natural selection: (1) the selection
threshold and resultant genetic entropy; (2) the waiting time to beneficial mutation,
i.e., irreducible complexity; and (3) the pressure of reductive evolution, i.e., the
pressure to shrink genomes and to disable unnecessary functions. The apparent
disparity between the two programs results primarily from differences in default
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settings. When used with similar settings that reflect biological systems, both
confirm that all three of the aforementioned barriers can prevent the progressive
evolution of novel genetic information. Though neutral or even maladaptive
changes (e.g., gene duplication) are often considered ‘“complex features”
[16,26,101,102], it is important to note that this is not synonymous with genetic
information. Even adaptive changes typically eliminate genetic information within
a genome [8,10].

The evolutionary barriers discussed in this report are not merely of theoretical
importance. As Lynch [4] and others [2,3,44-47] have shown, the human species
faces a potentially lethal threat from the accumulation of very slightly deleterious
mutations. Additionally, the lethal mutagenesis of pathogen populations may be
applicable in novel medical approaches to cure infection and thwart pandemics
[11-13]. It may be the case that novel means of genetic intervention to reduce
mutation will be necessary to prevent the extinction of numerous species, includ-
ing our own.

While both Avida and Mendel demonstrate that neo-Darwinian evolution may
be a theoretical possibility under certain conditions, both programs also suggest
that it is not a plausible explanation of most biological information. Such compu-
tational approaches can provide informative predictions of the values that key
parameters (e.g., the distribution of mutational fitness effects) must assume if neo-
Darwinian theory is viable. However, biological studies will be necessary to
determine the values that these parameters actually assume in nature.

Digital genetics pioneer Thomas Ray made the following point about computa-
tional evolutionary studies:

To understand the biology of digital organisms requires a knowledge of the
properties of machine instructions and machine language algorithms. ... there
exists a complementary relationship between biological theory and the synthesis of
life. Theory suggests how the synthesis can be achieved, while application of the
theory in the synthesis is a test of the theory. If theory suggests that a certain factor
will contribute to increasing diversity, then synthetic systems can be run with and
without that factor. The process of synthesis becomes a test of the theory [103].

It would seem, then, that the “unbiological” [21] parameters required to make the
neo-Darwinian mechanism succeed in computational experiments should call the
biological theory into question. As science commentator David Berlinski has
remarked, “Computer simulations of Darwinian evolution fail when they are
honest and succeed only when they are not” [104]. As more is learned about the
genetic basis of adaptive change and the distribution of mutational fitness effects,
the severity of these concerns for theory and medicine will become clearer.
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Addendum

Because of a delay in this work’s publication, several new relevant studies are not
discussed therein. First, the authors have expanded upon the topic of numerical
genetic simulation in another paper (Sanford, J.C., Nelson, C.W.: The next step in
understanding population dynamics: comprehensive numerical simulation. In:
Fusté, M.C. (ed.), Studies in Population Genetics, InTech, pp. 117-136). This
paper reviews population genetic simulations, comments on Avida, and discusses
general population genetic principles revealed by Mendel’s Accountant, especially
as concerns fixation. The selection threshold concept is also further developed, as
first discussed by Nelson and Sanford in reference 24. Two papers utilizing the
Avida platform have been released. The first (Adami, C., Qian, J., Rupp, M.,
Hintze, A.: Information content of colored motifs in complex networks. Artif Life
17, 375-390) traces network evolution in Avidian organisms, implementing typical
parameter values. Fitness increases 100,000-fold over 90,000 updates
(approximately 9,000 generations), reflecting the program’s high-impact beneficial
mutations. Another study (Clune, J., Pennock, R.T., Ofria, C., Lenski, R.E.:
Ontogeny tends to recapitulate phylogeny in digital organisms. Am Nat 180,
E54-63) also used default fitness effects. To our knowledge, biologically
meaningful fitness effects have not been used, and direct mutational paths to
complex instruction combinations are implemented. Thus, Avida researchers have
not yet addressed concerns (e.g., those first raised in reference 24) regarding the
relevance of Avida to biological organisms.
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